

ООО «РемСтанМаш»

All a state of the state

AND SHOP FOR THE OWNER

Адрес: г. Смоленск, улица Верхне-Сенная улица, дом 4, офис № 409. Телефон: 8-800-511-02-67 Телефон: +7-919-0-46-48-46 Е-mail: info@cnchelp.ru Сайт: www.cnchelp.ru

HEIDENHAIN

Exposed linear encoders

Linear encoders measure the position of linear axes without additional mechanical transfer elements. This eliminates a number of potential error sources:

- Positioning error due to thermal behavior of the recirculating ball screw
- Reversal error
- Kinematics error through ball-screw pitch
 error

Linear encoders are therefore indispensable for machine tools on which high **positioning accuracy** and a high **machining rate** are essential.

Exposed linear encoders are designed

for use on machines and installations that require especially high accuracy of the measured value. Typical applications include:

- Measuring and production equipment in the semiconductor industry
- PCB assembly machines
- Ultra-precision machines such as diamond lathes for optical components, facing lathes for magnetic storage disks, and grinding machines for ferrite components
- High-accuracy machine tools
- Measuring machines and comparators, measuring microscopes, and other precision measuring devices
- Direct drives

Mechanical design

Exposed linear encoders consist of a scale or scale tape and a scanning head that operate without mechanical contact. The scales of exposed linear encoders are fastened to a mounting surface. The flatness of the mounting surface is therefore a prerequisite for high accuracy of the encoder.

Information on

- angle encoders with integral bearing
- modular angle encoders with optical scanning
- modular angle encoders with magnetic scanning
- rotary encoders
- encoders for servo drives
- linear encoders for numerically controlled machine tools
- interface electronics
- HEIDENHAIN controls

is available on request as well as on the Internet at *www.heidenhain.de*

This brochure supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the brochure edition valid when the order is made.

Standards (ISO, EN, etc.) apply only where explicitly stated in the brochure.

More information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Contents

rview		
	Exposed linear encoders	2
	Selection guide	4
hnical characteristics		
	Measuring principles	8
	Reliability	1:
	Measuring accuracy	14
	Mechanical design types and mounting	17
	General mechanical information	2'
cifications		
For absolute position measurement	LIC 4113, LIC 4193	2
	LIC 4115, LIC 4195	24
	LIC 4117, LIC 4197	20
	LIC 4119, LIC 4199	23
	LIC 2117, LIC 2197	3
	LIC 2119, LIC 2199	32
For high accuracy	LIP 382	34
	LIP 211, LIP 281, LIP 291	3
	LIP 6071, LIP 6081	3
	LIF 471, LIF 481	4
For high traversing speed	LIDA 473, LIDA 483	4
	LIDA 475, LIDA 485	44
	LIDA 477, LIDA 487	4
	LIDA 479, LIDA 489	4
	LIDA 277, LIDA 287	5
	LIDA 279, LIDA 289	52
For two-coordinate measurement	PP 281R	54
strical connection		
	Interfaces	50
	Cables and connecting elements	63
	Diagnostic and testing equipment	67
	Interface electronics	69

Selection guide

Absolute encoders and encoders with position value output

Absolute position measurement

The **LIC** exposed linear encoders permit absolute position measurement both over large traverse paths up to 28 m and at high traversing speed.

Encoders for application in vacuum

HEIDENHAIN standard encoders are suitable for use in a low or medium vacuum. Encoders used for applications in a high or ultrahigh vacuum need to fulfill special requirements. Design and materials used have to be specially adapted for it. For more information, refer to the Technical Information document *Linear Encoders for Vacuum Technology*.

The LIC 4113V and LIC 4193V linear encoders are specially adapted for use in high vacuum environments. For more information, please refer to the appropriate Product Information documents.

Incremental encoder with position value output

The LIP 211 and LIP 291 incremental linear encoders output the position information as a position value. The sinusoidal scanning signals are highly interpolated in the scanning head and converted to a position value by the integrated counter function. As with all incremental encoders, the absolute reference is established with the aid of reference marks.

	Baseline erro	r	Substrate and mounting
	Accuracy grade	Interval	
LIC 4100 For high accuracy and high traversing speeds	±1 μm ¹⁾ ±3 μm ±5 μm	≤ ±0.275 µm/ 10 mm	Glass or glass ceramic scale, bonded to the mounting surface or attached with fixing clamps
	±5 μm	≤ ±0.750 µm/ 50 mm (typical)	Steel scale tape drawn into aluminum extrusions and tensioned
	±3 μm ²⁾ ±5 μm ³⁾ ±15 μm ⁴⁾	≤ ±0.750 µm/ 50 mm (typical)	Steel scale tape drawn into aluminum extrusions and fixed
	±3 μm ±15 μm ⁴⁾	≤ ±0.750 µm/ 50 mm (typical)	Steel scale tape, cemented on mounting surface
LIC 2100 For high traversing speed	±15 μm	-	Steel scale tape drawn into aluminum extrusions and fixed
	±15 μm	-	Steel scale tape, cemented on mounting surface
LIP 200 For very high accuracy	±1 μm ²⁾ ±3 μm	≤ ±0.125 µm/ 5 mm	Scale of Zerodur glass ceramic with fixing clamps

¹⁾ Up to measuring length ML = 1640 mm

²⁾ Up to measuring length ML = 1020 mm or 1040 mm

Interpolation error	Signal period	Measuring length	Interface	Туре	Page
±20 nm	-	240 mm to 3040 mm	EnDat 2.2	LIC 4113	22
		5040 11111	Fanuc αi	LIC 4193 F	
			Mitsubishi	LIC 4193 M	
			Panasonic	LIC 4193 P	
±20 nm	-	140 mm to 28440 mm	EnDat 2.2	LIC 4115	24
		20440 11111	Fanuc αi	LIC 4195 F	
			Mitsubishi	LIC 4195 M	
			Panasonic	LIC 4195 P	
 ±20 nm	-	240 mm to 6040 mm	EnDat 2.2	LIC 4117	26
		0040 mm	Fanuc αi	LIC 4197 F	
			Mitsubishi	LIC 4197 M	
			Panasonic	LIC 4197 P	
±20 nm	-	70 mm to 1020 mm	EnDat 2.2	LIC 4119	28
	1020 mm	Fanuc αi	LIC 4199 F		
			Mitsubishi	LIC 4199 M	
			Panasonic	LIC 4199 P	
±2 μm	-	120 mm to 3020 mm	EnDat 2.2	LIC 2117	30
		5020 11111	Fanuc αi	LIC 2197 F	
			Mitsubishi	LIC 2197 M	
			Panasonic	LIC 2197 P	
±2 μm	-	120 mm to 3020 mm	EnDat 2.2	LIC 2119	32
		5020 11111	Fanuc αi	LIC 2199 F	
			Mitsubishi	LIC 2199 M	
			Panasonic	LIC 2199 P	
±0.4 nm ⁵⁾	0.512 µm	20 mm to	EnDat 2.2	LIP 211	36
3040 r	3040 mm	Fanuc αi	LIP 291 F		
			Mitsubishi	LIP 291 M	

LIC 41x5

LIC 41x7

LIC 21x9

LIP 211

³⁾ As of measuring length ML = 1240 mm
 ⁴⁾ ±5 µm after linear length-error compensation in the evaluation electronics
 ⁵⁾ With HEIDENHAIN interface electronics

Selection guide Incremental encoders

Very high accuracy

The **LIP** exposed linear encoders are characterized by very small measuring steps together with very high accuracy and repeatability. They operate according to the interferential scanning principle and feature a DIADUR phase grating as the measuring standard (LIP 281: OPTODUR phase grating).

High accuracy

The **LIF** exposed linear encoders have a measuring standard manufactured in the SUPRADUR process on a glass substrate and operate on the interferential scanning principle. They feature high accuracy and repeatability, are especially easy to mount, and have limit switches and homing tracks. The special version LIF 481 V can be used in high vacuum up to 10⁻⁷ millibars (see separate Product Information document).

High traversing speeds

The **LIDA** exposed linear encoders are designed for high traversing speeds up to 10 m/s. They are particularly easy to mount with various mounting possibilities Steel scale tapes, glass or glass ceramic are used as carriers for METALLUR graduations, depending on the respective encoder model. They also feature a limit switch.

Two-coordinate measurement

On the **PP** two-coordinate encoder, a planar phase-grating structure manufactured with the DIADUR process serves as the measuring standard, which is scanned interferentially. This makes it possible to measure positions in a plane.

Encoders for application in vacuum

HEIDENHAIN standard encoders are suitable for use in a low or medium vacuum. Encoders used for applications in a high or ultrahigh vacuum need to fulfill special requirements. Design and materials used have to be specially adapted for it. For more information, refer to the Technical Information document *Linear Encoders for Vacuum Technology*.

The following exposed linear encoders are specially adapted for use in high and ultrahigh vacuum environments.

- High vacuum: LIP 481V and LIF 481V
- Ultrahigh vacuum: LIP 481 U

For more information, please refer to the appropriate product information documents.

	Baseline erro	or	Substrate and mounting		
	Accuracy grade ¹⁾	Interval			
LIP For very high accuracy	±0.5 μm ³⁾	≤ ±0.075 µm/ 5 mm	Zerodur glass ceramic embedded in bolted-on Invar carrier		
	±1 μm ²⁾ ± 3 μm	≤ ±0.125 µm/ 5 mm	Scale of Zerodur glass ceramic, attached with fixing clamps		
	±1 μm ⁵⁾ ± 3 μm	≤ ±0.175 µm/ 5 mm	Glass or Zerodur glass ceramic scale, bonded or attached with fixing clamps		
LIF For high accuracy	±1 μm ⁸⁾ ± 3 μm	≤ ±0.225 µm/ 5 mm	Glass or Zerodur glass ceramic scale, bonded or attached with fixing clamps		
	±1 μm ⁵⁾ ± 3 μm	≤ ±0.225 µm/ 5 mm	Scale of Zerodur glass ceramic or glass, cemented with PRECIMET adhesive film		
LIDA For high traversing speeds and large measuring lengths	±1 μm ⁹⁾ ±3 μm ±5 μm	≤ ±0.275 µm/ 10 mm	Glass or glass ceramic scale, bonded to the mounting surface		
	±5 µm	≤ ±0.750 µm/ 50 mm (typical)	Steel scale tape drawn into aluminum extrusions and tensioned		
	±3 μm ²⁾ ±5 μm ±15 μm ⁶⁾	≤ ±0.750 µm/ 50 mm (typical)	Steel scale tape drawn into aluminum extrusions and fixed		
	±3 μm ²⁾ ±15 μm ⁶⁾	≤ ±0.750 µm/ 50 mm (typical)	Steel scale tape, cemented on mounting surface		
	±15 µm	-	Steel scale tape drawn into aluminum extrusions and fixed		
	±15 μm	-	Steel scale tape, cemented on mounting surface		
PP For two-coordinate measurement	±2 μm	-	Glass grid plate, with full-surface bonding		
LIP/LIF For application in high and ultrahigh vacuum	±0.5 μm ±1 μm	≤ ±0.175 µm/ 5 mm	Scale of Zerodur glass ceramic or glass, attached with fixing clamps		
technology	±3 µm	≤ ±0.225 µm/ 5 mm	, ciampo		

 $\frac{1}{2}$ In the interval of 1 m or the measuring length < 1 m (accuracy grade)

²⁾ Up to measuring lengths of 1020 mm or 1040 mm

³⁾ Higher accuracy grades available upon request

⁴⁾ Other measuring lengths/ranges upon request

Interpolation error	Signal period	Measuring length	Interface	Туре	Page
±0.01 nm	0.128 µm	70 mm to 270 mm	∕~ 1 V _{PP}	LIP 382	34
±0.4 nm ⁷⁾	0.512 µm	20 mm to 3040 mm	∕~ 1 V _{PP}	LIP 281	36
-	4 µm	20 mm to 3040 mm		LIP 6071	38
±4 nm			∕~ 1 V _{PP}	LIP 6081	
_	4 µm	70 mm to 3040 mm ⁴⁾		LIF 171	Product Infor-
±12 nm		5040 mm	∕~ 1 V _{PP}	LIF 181	mation
-	4 µm	70 mm to 1640 mm		LIF 471	40
±12 nm		1040 mm	∕~ 1 V _{PP}	LIF 481	
 -	20 µm	240 mm to		LIDA 473	42
±45 nm		3040 mm	∕~ 1 V _{PP}	LIDA 483	
 -	20 µm	140 mm to		LIDA 475	44
±45 nm		30040 mm	∕~ 1 V _{PP}	LIDA 485	
 _	20 µm	240 mm to		LIDA 477	46
±45 nm		6040 mm	~ 1 V _{PP}	LIDA 487	
 _	20 µm	Up to 6000 mm ⁴⁾		LIDA 479	48
±45 nm		mm	∕~ 1 V _{PP}	LIDA 489	
 _	200 µm	Up to 10000 mm ⁴⁾		LIDA 277	50
± 2 μm		mm ^r	~ 1 V _{PP}	LIDA 287	
_	200 µm	Up to 10000 mm ⁴⁾		LIDA 279	52
± 2 μm		mm í	~ 1 V _{PP}	LIDA 289	
±12 nm ⁷⁾	4 µm	Measuring	1 V _{PP}	PP 281	54
±121111	4 μπ	range 68 x 68 mm ⁴⁾		FF 201	54
±7 nm	2 µm	70 mm to 420 mm	∕ 1 V _{PP}	LIP 481V LIP 481 U	Product Informa- tion
±12 nm ⁷⁾	4 µm	70 mm to 1020 mm		LIF 481V	

LIDA 287

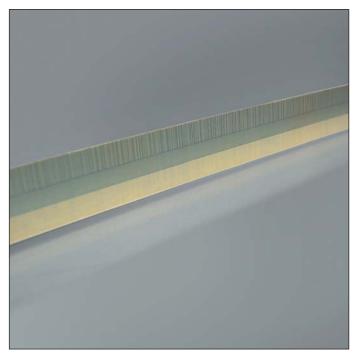
⁵⁾ Only for Zerodur glass ceramic up to measuring length 1020 mm
⁶⁾ ±5 μm after linear length-error compensation in the subsequent electronics
⁷⁾ With HEIDENHAIN interface electronics, e.g. EIB 741
⁸⁾ Up to measuring length 1640 mm
⁹⁾ Only for Robax glass ceramic up to measuring length 1640 mm

Measuring principles

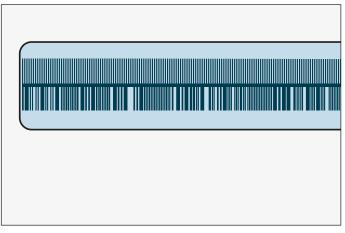
Measuring standard

HEIDENHAIN encoders with optical scanning incorporate measuring standards of periodic structures known as graduations. These graduations are applied to a carrier substrate of glass or steel. The scale substrate for large measuring lengths is a steel tape.

HEIDENHAIN manufactures the precision graduations in the following specially developed, photolithographic processes.


- AURODUR: matte-etched lines on goldplated steel tape with typical graduation period of 40 µm
- METALLUR: contamination-tolerant graduation of metal lines on gold, with typical graduation period of 20 µm
- DIADUR: extremely robust chromium lines on glass (typical graduation period of 20 μm) or three-dimensional chromium structures (typical graduation period of 8 μm) on glass
- SUPRADUR phase grating: optically three dimensional, planar structure; particularly tolerant to contamination; typical graduation period of 8 µm and finer
- OPTODUR phase grating: optically three dimensional, planar structure with particularly high reflectance, typical graduation period of 2 µm and less

Along with these very fine grating periods, these processes permit a high definition and homogeneity of the line edges. Together with the photoelectric scanning method, this high edge definition is a precondition for the high quality of the output signals.


The master graduations are manufactured by HEIDENHAIN on custom-built, highprecision dividing engines.

Absolute measuring method

With the absolute measuring method, the position value is available from the encoder immediately upon switch-on and can be called at any time by the subsequent electronics. There is no need to move the axes to find the reference position. The absolute position information is read **from the graduated disk**, which is formed from a serial absolute code structure. A separate incremental track is interpolated for the position value and at the same time— depending on the interface version—is used to generate an optional incremental signal.

Graduation of an absolute linear encoder

Representation of an absolute code structure with an additional incremental track (LC 401x as example)

Incremental measuring method

With the incremental measuring method, the graduation consists of a periodic grating structure. The position information is obtained **by counting** the individual increments (measuring steps) from some point of origin. Since an absolute reference is required to ascertain positions, the measuring standard is provided with an additional track that bears a **reference mark**. The absolute position on the scale, established by the reference mark, is gated with exactly one signal period.

The reference mark must therefore be scanned to establish an absolute reference or to find the last selected datum.

In the most unfavorable case, this may necessitate machine movements over large lengths of the measuring range. To speed and simplify such "reference runs," many HEIDENHAIN encoders feature **distancecoded reference marks**—multiple reference marks that are individually spaced according to a mathematical algorithm. The subsequent electronics find the absolute reference after traversing two successive reference marks—only a few millimeters traverse (see table below).

Encoders with distance-coded reference marks are identified with a "C" ending the model designation (e.g. LIF 181 C).

With distance-coded reference marks, the **absolute reference B** is calculated by counting the signal periods between two reference marks and using the following formula:

 $P_1 = (abs R-sgn R-1) \times \frac{N}{2} + (sgn R-sgn D) \times \frac{abs M_{RR}}{2}$

and

 $R = 2 \times M_{RR} - N$

Where:

- P₁ = Position of the first traversed reference mark in signal periods
- abs = Absolute value
- sgn = Algebraic sign function ("+1" or "-1")

9

- M_{RR} = Number of signal periods between the traversed reference marks
- Nominal increment between two fixed reference marks in signal periods (see table below)

 D = Direction of traverse (+1 or -1). Traverse of scanning unit to the right (when properly installed) equals +1.

Ō

10.02

	Signal period	Nominal increment N in signal periods	Maximum traverse
LIF 1x1C	4 µm	5000	20 mm
LIDA 4x3C	20 µm	1000	20 mm

Ν

Representation of an incremental graduation with distance-coded reference marks (LIDA 4x3C as example)

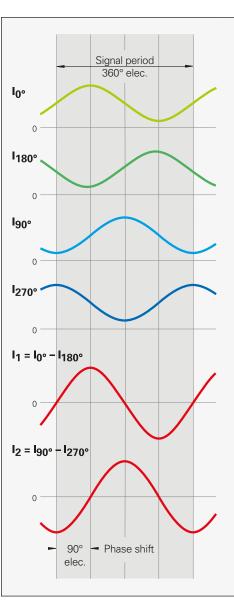
20

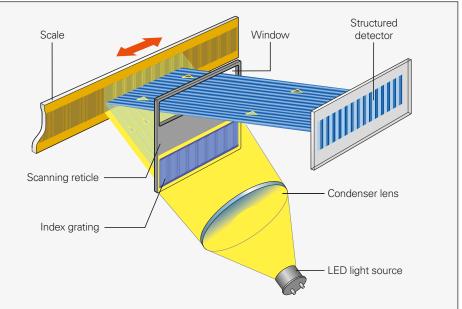
10.04

Photoelectric scanning principle

Most HEIDENHAIN encoders operate using the principle of photoelectric scanning. Photoelectric scanning of a measuring standard is contact-free, and as such, free of wear. This method detects even very fine lines, no more than a few micrometers wide, and generates output signals with very small signal periods.

The finer the grating period of a measuring standard is, the greater the effect of diffraction on photoelectric scanning. HEIDENHAIN linear encoders use two scanning principles:

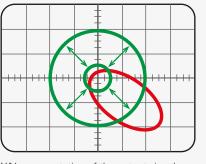

- The **imaging scanning** principle for grating periods from 10 µm to 200 µm.
- The **interferential scanning principle** for very fine graduations with grating periods of 4 µm and smaller.


Imaging principle

Put simply, the imaging scanning principle functions by means of projected-light signal generation: two graduations with equal or similar grating periods—the scale and the scanning reticle—are moved relative to each other. The carrier material of the scanning reticle is transparent, whereas the graduation on the measuring standard may be applied to a transparent or reflective surface.

When parallel light passes through a grating, light and dark surfaces are projected at a certain distance. An index grating with the same or similar grating period is located here. When the two graduations move in relation to each other, the incident light is modulated: if the gaps are aligned, light passes through. If the lines of one grating coincide with the gaps of the other, no light passes through. Photovoltaic cells convert these light fluctuations into electrical signals. The specially structured grating of the scanning reticle filters the light to generate nearly sinusoidal output signals. The smaller the period of the grating structure is, the closer and more tightly toleranced the gap must be between the scanning reticle and scale. Practical mounting tolerances for encoders with the imaging scanning principle are achieved with grating periods of 10 µm and larger.

The **LIC** and **LIDA** linear encoders operate according to the imaging scanning principle.



Photoelectric scanning in accordance with the imaging principle with a steel scale and single-field scanning (LIDA 400)

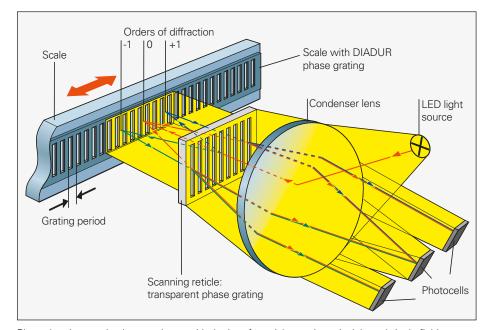
The sensor generates four nearly sinusoidal current signals (I_{0° , I_{90° , I_{180° and I_{270°), electrically phase-shifted to each other by 90°. These scanning signals do not at first lie symmetrically about the zero line. For this reason the photovoltaic cells are connected in a push-pull circuit, producing two 90° phase-shifted output signals I_1 and I_2 in symmetry with respect to the zero line.

In the XY representation on an oscilloscope, the signals form a Lissajous figure. Ideal output signals appear as a centered circle. Deviations in the circular form and position are caused by position error and therefore go directly into the result of measurement. The size of the circle, which corresponds to the amplitude of the output signal, can vary within certain limits without influencing the measuring accuracy.

X/Y representation of the output signals

Interferential scanning principle

The interferential scanning principle exploits the diffraction and interference of light on a fine graduation to produce signals used to measure displacement.


A step grating is used as the measuring standard: reflective lines 0.2 µm high are applied to a flat, reflective surface. In front of that is the scanning reticle—a transparent phase grating with the same grating period as the scale.

When a light wave passes through the scanning reticle, it is diffracted into three partial waves of the orders -1, 0, and +1, with approximately equal luminous intensity. The waves are diffracted by the scale such that most of the luminous intensity is found in the reflected diffraction orders +1 and -1. These partial waves meet again at the phase grating of the scanning reticle where they are diffracted again and interfere. This produces essentially three waves that leave the scanning reticle at different angles. Photovoltaic cells convert this alternating light intensity into electrical signals.

A relative motion of the scanning reticle to the scale causes the diffracted wave fronts to undergo a phase shift: When the grating moves by one period, the wave front of the first order is displaced by one wavelength in the positive direction, and the wavelength of diffraction order –1 is displaced by one wavelength in the negative direction. Since the two waves interfere with each other when exiting the grating, the waves are shifted relative to each other by two wavelengths. This results in two signal periods from the relative motion of just one grating period.

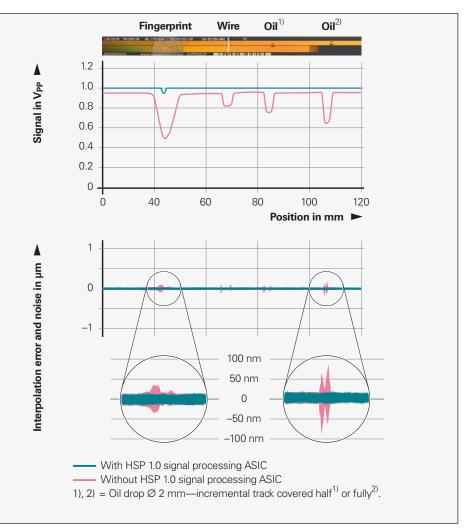
Interferential encoders function with grating periods of, for example, 8 μ m, 4 μ m and finer. Their scanning signals are largely free of harmonics and can be highly interpolated. These encoders are therefore especially suited for small measuring steps and high accuracy. Even so, their generous mounting tolerances permit installation in a wide range of applications.

LIP, LIF and **PP** linear encoders operate according to the interferential scanning principle.

Photoelectric scanning in accordance with the interferential scanning principle and single-field scanning

Reliability

Exposed linear encoders from HEIDENHAIN are optimized for use on fast, precise machines. In spite of the exposed mechanical design, they are highly tolerant to contamination, ensure high long-term stability, and are quickly and easily mounted.


Lower sensitivity to contamination

Both the high quality of the grating and the scanning method are responsible for the accuracy and reliability of linear encoders. Exposed linear encoders from HEIDENHAIN operate with single-field scanning. One large scanning field is used to generate the scanning signals. With single-field scanning, local contamination on the measuring standard (e.g., fingerprints from mounting or oil accumulation from guideways) only slightly influences the light intensity of the signal components, and therefore the scanning signals. The output signals do change in their amplitude, but not in their offset and phase position. They remain highly interpolable, and the position error within one signal period remains small.

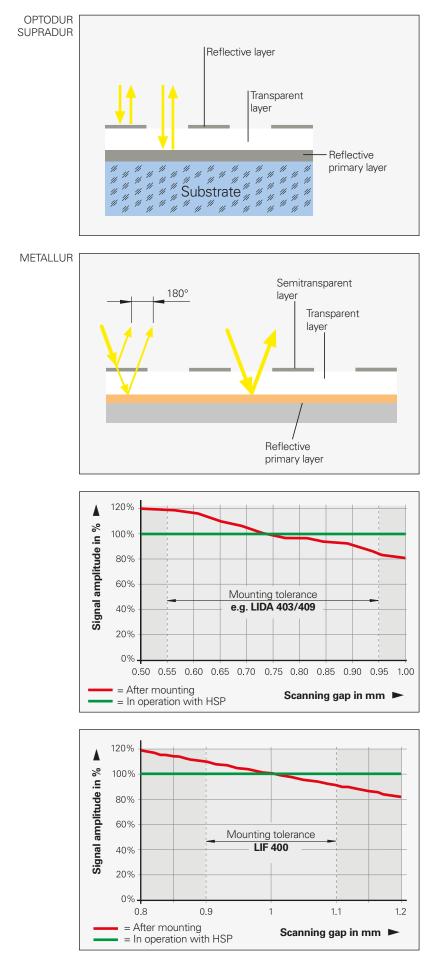
The **large scanning field** additionally reduces sensitivity to contamination. In many cases this can prevent encoder failure. This is particularly clear with the LIDA 400 and LIF 400, which in relation to the grating period have a very large scanning surface of 14.5 mm² as well as the LIC 4100 with 15.5 mm². Even if the contamination from printer's ink, PCB dust, or drops of water or oil is up to 3 mm in diameter, the encoders continue to provide high-quality signals. The position error remains far below the values specified for the accuracy grade of the scale.

The LIDA, LIC, LIF, and LIP 6000 encoders are equipped with the HSP 1.0 signal processor ASIC from HEIDENHAIN. The ASIC continuously monitors the scanning signal and almost completely compensates fluctuations in signal amplitude. If the signal amplitude decreases as the result of contamination on the scanning reticle or measuring standard, the ASIC corrects this by increasing the LED current. The ensuing increase in the LED light intensity barely raises the noise level, even when there is a high degree of signal stabilization. As a result, contamination has only a very slight influence on interpolation errors and the position noise.

Measuring standard with contamination and the associated signal amplitudes with conventional scanning and scanning with the HSP 1.0 signal processing ASIC

Durable measuring standards

By the nature of their design, the measuring standards of exposed linear encoders are less protected from their environment. HEIDENHAIN therefore always uses tough gratings manufactured in special processes.


In the DIADUR process, hard chrome structures are applied to a glass or steel carrier.

In the OPTODUR and SUPRADUR process, a transparent layer is applied first over the reflective primary layer. An extremely thin, hard chrome laver is applied to produce an optically three-dimensional phase grating. Graduations that use the imaging scanning principle are produced according to the METALLUR procedure, and have a very similar structure. A reflective gold layer is covered with a thin layer of glass. On this layer are lines of chromium only several nanometers thick, which are semitransparent and act as absorbers. Measuring standards with OPTODUR, SUPRADUR or METALLUR graduations have proven to be particularly robust and insensitive to contamination because the low height of the structure leaves practically no surface for dust, dirt or water particles to accumulate.

Application-oriented mounting tolerances

Very small signal periods usually come with very narrow mounting tolerances for the gap between the scanning head and scale tape. This is the result of diffraction caused by the grating structures. It can lead to a signal attenuation of 50 % with a gap change of only ± 0.1 mm. Thanks to the interferential scanning principle and innovative index gratings in encoders with the imaging scanning principle, it has become possible to provide ample mounting tolerances in spite of the small signal periods.

The mounting tolerances of exposed linear encoders from HEIDENHAIN have only a slight influence on the output signals. In particular, the specified distance tolerance between the scale and scanning head (scanning gap) causes only negligible change in the signal amplitude. During operation, the reliability and stability of the signals are additionally improved by the HSP 1.0. The two diagrams illustrate the correlation between the scanning gap and signal amplitude for the encoders of the LIDA 400 and LIF 400 series.

Measuring accuracy

The accuracy of linear measurement is mainly determined by

- the quality of the graduation,
- the quality of the graduation carrier,
- the quality of the scanning process,
- the quality of the signal processing electronics,
- how the encoder is installed within the machine.

These factors of influence are comprised of encoder-specific position error and application-dependent issues. All individual factors of influence must be considered in order to assess the attainable overall accuracy.

Encoder-specific position error

- Encoder-specific position error includes
- accuracy of the measuring standard,
- accuracy of the interpolation,
- position noise.

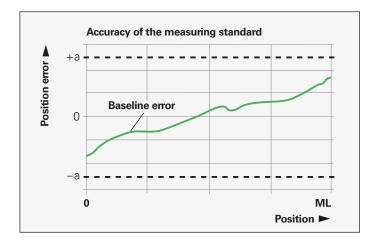
Accuracy of the measuring standard

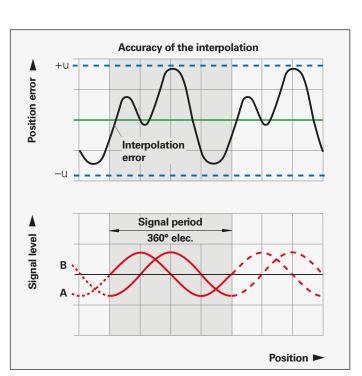
The accuracy of the measuring standard is mainly determined by

- the homogeneity and period definition of the graduation,
- the alignment of the graduation on its carrier,
- the stability of the graduation carrier.

The accuracy of the measuring standard is indicated by the uncompensated maximum value of the **baseline error**. It is ascertained under ideal conditions by using a seriesproduced scanning head to measure position error. The spacing of measuring points is an integral multiple of the signal period, so that interpolation errors have no influence.

The accuracy grade **a** defines the upper limit of the baseline error within any max. one-meter section. For special encoders, a baseline error is additionally stated for defined intervals of the measuring standard.


Accuracy of the interpolation


The accuracy of the interpolation is mainly influenced by

- the size of the signal period,
- the homogeneity and period definition of the graduation,
- The quality of scanning filter structures
- The characteristics of the sensors
- the quality of the signal processing.

The accuracy of the interpolation is ascertained with a series-produced measuring standard, and is indicated by a typical maximum value **u** of the interpolation error. Encoders with analog interface are tested using HEIDENHAIN electronics (e.g. EIB 741). The maximum values do not include position noise and are indicated in the Specifications.

The interpolation error has an effect with even very small traversing speeds and during repeat measurements. Especially in the speed control loop, it leads to fluctuations in traversing speed.

Position noise

Position noise is a random process leading to unpredictable position errors. The position values are grouped around an expected value in the form of a frequency distribution.

The position noise depends on the signal processing bandwidths necessary for forming the position values. It is ascertained within a defined time period, and is indicated as a product-specific RMS value.

In the velocity control loop, position noise influences speed stability at low traversing speeds.

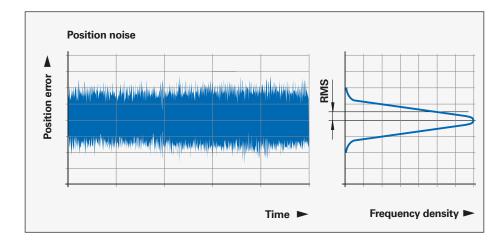
Application-dependent position error

In addition to the given encoder-specific position error, **installing the encoder in the machine**, normally has a significant effect on the accuracy attainable by encoders without integral bearings. The application-dependent error values must be measured and considered individually in order to evaluate the **overall accuracy**.

Deformation of the graduation

Errors due to a deformation of the graduation are not to be neglected. It occurs when the measuring standard is mounted on an uneven, for example convex, surface.

Mounting location


Poor mounting of linear encoders can aggravate the effect of guideway error on measuring accuracy. To keep the resulting Abbé error as small as possible, the scale should be mounted at table height on the machine slide. It is important to ensure that the mounting surface is parallel to the machine guideway.

Vibration

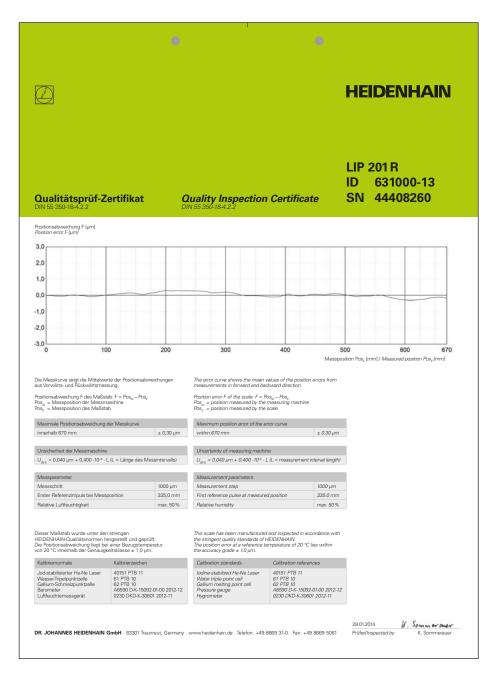
To function properly, linear encoders must not be continuously subjected to strong vibration; the more solid parts of the machine tool provide the best mounting surface in this respect. Encoders should not be mounted on hollow parts or with adapter blocks.

Temperature influence

The linear encoders should be mounted away from sources of heat to avoid temperature influences.

Calibration chart

All HEIDENHAIN linear encoders are inspected before shipping for accuracy and proper function.


They are calibrated for accuracy during traverse in both directions. The number of measuring positions is selected to determine very exactly not only the long-range error, but also the position error within one signal period.

The **Quality Inspection Certificate** confirms the specified accuracy grades of each encoder. The **calibration standards** ensure the traceability—as required by EN ISO 9001—to recognized national or international standards.

For the encoders of the LIP and PP series, in addition a calibration chart documents the **position error** over the measuring range. It also indicates the measuring parameters and the uncertainty of the calibration measurement.

Temperature range

The linear encoders are calibrated at a **reference temperature** of 20 °C. The system accuracy given in the calibration chart applies at this temperature.

Mechanical design types and mounting

Linear scales

Exposed linear encoders consist of two components: the scanning head and the scale or scale tape. They are positioned to each other solely by the machine guideway. For this reason the machine must be designed from the very beginning to meet the following prerequisites:

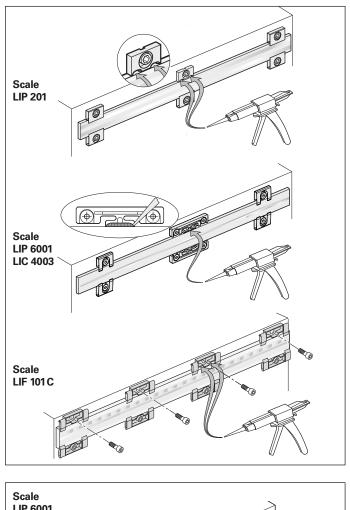
- The machine guideway must be designed so that the mounting space for the encoder meets the **tolerances for the scanning gap** (see *Specifications*)
- The bearing surface of the scale must meet requirements for **flatness**
- To facilitate adjustment of the scanning head to the scale, it should be fastened with a **bracket**

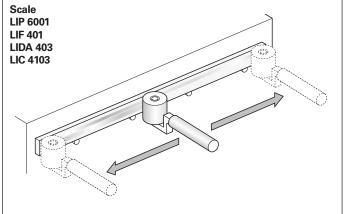
Scale versions

HEIDENHAIN provides the appropriate scale version for the application and accuracy requirements at hand.

LIP 201 LIP 6001 LIC 4003

The graduation carriers are fastened onto the mounting surface with clamps. A holder is used to specify the thermal fixed point.


Accessories for LIC 41x3 and LIP 60x1:Fixing clampsID 1176458-01Holder for thermalID 1176475-01fixed pointID 1176441-01Spacer shimsID 1176441-01AdhesiveID 1180444-01Double-cartridge gunID 1180450-01Dispensing nozzles andmixing tubesID 1176444-01


LIP 6001 LIF 401 LIDA 403 LIC 4103

The graduation carriers are glued directly to the mounting surface with PRECIMET adhesive film, and pressure is evenly distributed with a roller. A thermal fixed point can be fixed with epoxy adhesive.

Accessories Roller

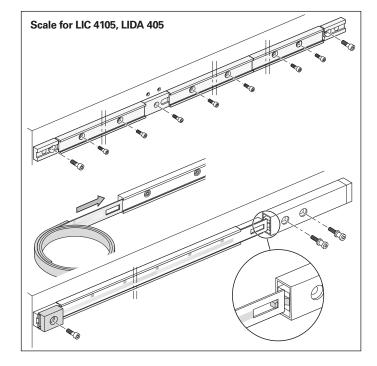
ID 276885-01

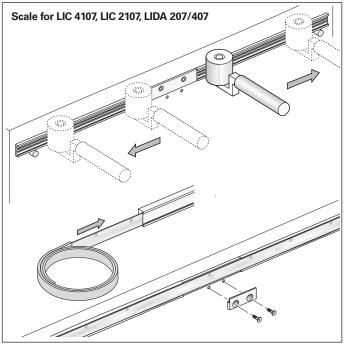
LIC 41x5 LIDA 4x5

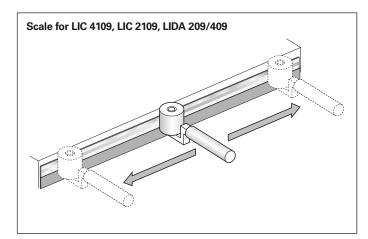
Linear encoders of the LIC 41x5 and LIDA 4x5 series are specially designed for large measuring lengths. They are mounted with scale carrier sections screwed onto the mounting surface or cemented with PRECIMET adhesive film. Then the onepiece steel scale-tape is pulled into the carrier, **tensioned** in a defined manner, and **secured at its ends** to the machine base. The LIC 41x5 and LIDA 4x5 therefore share the thermal behavior of their mounting surface.

LIC 21x7 LIC 41x7 LIDA 2x7 LIDA 4x7

Encoders of the LIC 41x7, LIC 21x7, LIDA 2x7 and LIDA 4x7 series are also designed for large measuring lengths. The scale carrier sections are secured to the supporting surface with PRECIMET adhesive mounting film; the one-piece scale tape is pulled in and **the midpoint is secured** to the machine bed. This mounting method allows the scale to expand freely at both ends and ensures a defined thermal behavior.


Accessory for LIC 41x7, LIDA 4x7 Mounting aid ID 373990-01


Mounting aid (for LIC 41x7, LIDA 4x7)


LIC 21x9 LIC 41x9 LIDA 2x9 LIDA 4x9

The steel scale-tape of the graduation is cemented directly to the mounting surface with PRECIMET adhesive film, and pressure is evenly distributed with a roller. A ridge or aligning rail 0.3 mm high is to be used for horizontal alignment of the scale tape.

Accessories for versions with PRECIMETRollerID 276885-01Mounting aid, LIDA 2x9ID 1070307-01Mounting aid, LIC 21x9ID 1070853-01

Mechanical design types and mounting Scanning heads

Because exposed linear encoders are assembled on the machine, they must be precisely adjusted after mounting. This adjustment determines the final accuracy of the encoder. It is therefore advisable to design the machine for simplest and most practical adjustment as well as to ensure the most stable possible construction.

Mounting the LIP 2x1

LIP 2x can be attached from the side as well as from above. The housing cover has a raised contact surface for thermal connection to ensure optimal heat dissipation. The contact surface is compressed against the mounting element during mounting.

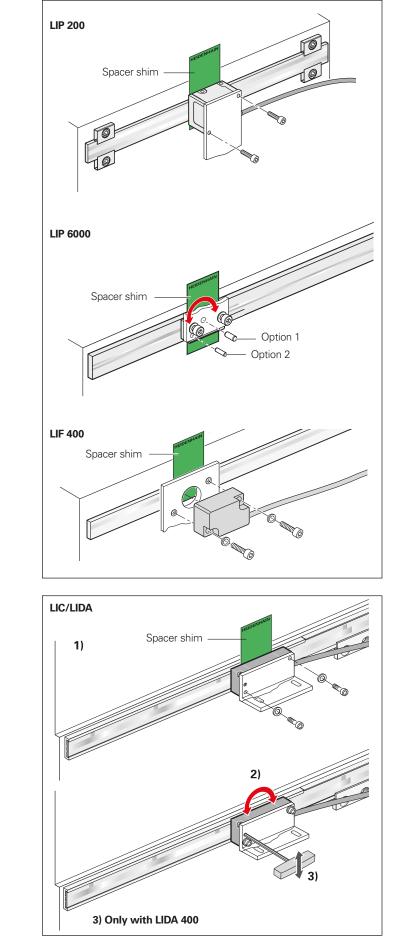
Mounting the LIP 60x1

LIP 60x can be attached from the side as well as from above. When mounted from above, it is additionally possible to define a permanent center of rotation by inserting a dowel pin with \emptyset 2 mm or \emptyset 3 mm. This makes it easy to align the scanning head parallel to the scale. The dowel pin can be removed when mounting is completed.

Mounting the LIF

The scanning head features a centering collar that allows it to be rotated in the location hole of the angle bracket and aligned parallel to the scale.

Mounting the LIC/LIDA


There are three options for mounting the scanning head (see *Dimensions*) A spacer shim makes it quite easy to set the gap between the scanning head and the scale or scale tape. It is helpful to fasten the scanning head from behind with a mounting bracket. The scanning head can be very precisely adjusted through a hole in the mounting bracket with the aid of a tool.

Adjustment

The gap between the scale and scanning head is easily adjusted with the aid of a spacer shim.

The signals from the LIC, LIP 6000, and LIP 200 are adjusted quickly and easily with the aid of the PWM 20/21 adjustment and testing package. For all other exposed linear encoders, the incremental and reference mark signals are adjusted through a slight rotation of the scanning head (for the LIDA 400 it is possible with the aid of a tool).

As adjustment aids, HEIDENHAIN offers the appropriate measuring and testing devices (see *Diagnostic and testing equipment*).

Function display

The LIDA, LIF, and LIP 6071 linear encoders feature an integrated function display with a multicolor LED. This makes it possible to quickly and easily check the signal quality during normal operation.

The function display offers a number of benefits:

- Quality of scanning signals displayed by multicolor LED
- Continuous monitoring of incremental signals over entire measuring length
- Function display of the reference-mark signal
- Quick check of correct operation in the field without technical aids

The integrated function display permits both a qualified judgment of the incremental signals as well as a check of the reference mark signal. The quality of the **incremental signals** is indicated by degrees of color. This makes a very detailed gradation of signal quality possible. The **reference mark signal's** compliance to tolerances is shown by a pass/fail display.

LIDA: Function display in the scanning head

LIF, LIP 6071: Function display in the interface electronics

LED display of incremental signals

LED color	Quality of the scanning signals
•	Optimum
•	Good
•	Acceptable
•	Unsatisfactory

LED reference-mark-signal display

(function check)

When the reference mark is scanned, the LED lights up briefly in blue or red. Out of tolerance

Within tolerance

General mechanical information

Temperature range

The **operating temperature range** indicates the limits of ambient temperature within which the values given in the specifications for linear encoders are maintained.

The **storage temperature range** of -20 °C to +70 °C applies when the unit remains in its packaging.

Thermal characteristics

The thermal behavior of the linear encoder is an essential criterion for the working accuracy of the machine. As a general rule, the thermal behavior of the linear encoder should match that of the workpiece or measured object. During temperature changes, the linear encoder should expand or contract in a defined, reproducible manner.

The graduation carriers of HEIDENHAIN linear encoders (see *Specifications*) have differing coefficients of thermal expansion. This makes it possible to select the linear encoder with thermal behavior best suited to the application.

Expendable parts

Encoders from HEIDENHAIN are designed for a long service life. Preventive maintenance is not required. However, they contain components that are subject to wear, depending on the application and manipulation. These include in particular cables with frequent flexing.

Other such components are the bearings of encoders with integral bearing, shaft sealing rings on rotary and angle encoders, and sealing lips on sealed linear encoders.

Protection (EN 60529)

The scanning heads of exposed linear encoders feature the following degrees of protection:

Scanning head	Protection
LIC	IP67
LIDA	IP40
LIF	IP50
LIP 200	IP40
LIP 300 LIP 6000	IP50
PP	IP50

The scales have no special protection. Protective measures must be taken if the possibility of contamination exists.

Acceleration

Linear encoders are subjected to various types of acceleration during operation and mounting.

- The indicated maximum values for vibration apply for frequencies of 55 Hz to 2000 Hz (EN 60068-2-6) Any acceleration exceeding permissible values, for example due to resonance depending on the application and mounting, might damage the encoder. Comprehensive tests of the entire system are therefore required
- The maximum permissible acceleration values (semi-sinusoidal shock) for shock and impact are valid for 11 ms or 6 ms (EN 60068-2-27). Under no circumstances should a hammer or similar implement be used to adjust or position the encoder

System tests

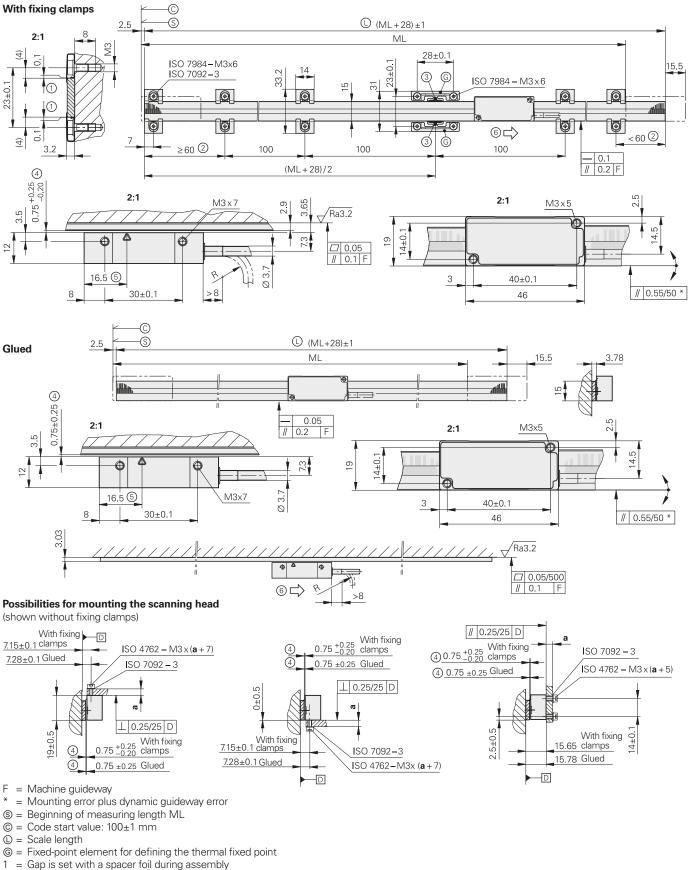
Encoders from HEIDENHAIN are usually integrated as components in larger systems. Such applications require **comprehensive tests of the entire system** regardless of the specifications of the encoder.

The specifications shown in this brochure apply to the specific encoder, not to the complete system. Any operation of the encoder outside of the specified range or for any applications other than the intended applications is at the user's own risk.

In safety-related systems, the encoder's position value must be tested after switch-on by the higher-level system.

Assembly

Work steps to be performed and dimensions to be maintained during mounting are specified solely in the mounting instructions supplied with the unit. All data in this brochure regarding mounting are therefore provisional and not binding; they do not become terms of a contract.


DIADUR, SUPRADUR, METALLUR and OPTODUR are registered trademarks of DR. JOHANNES HEIDENHAIN GmbH, Traunreut. Zerodur is a registered trademark of Schott-Glaswerke, Mainz, Germany.

LIC 4113, LIC 4193

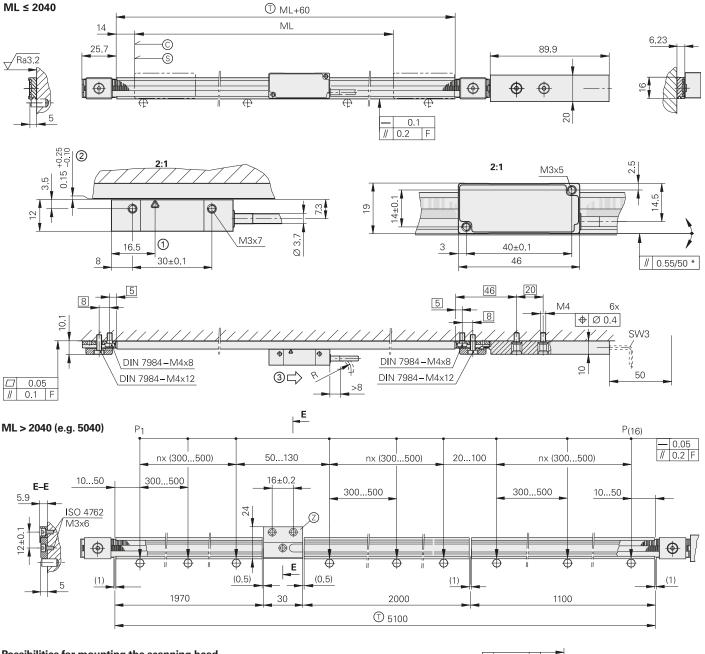
Absolute linear encoder for measuring lengths up to 3 m

Measuring steps to 1 nm

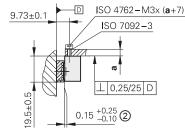
- Measuring standard of glass or glass ceramic
- Measuring standard is fastened by adhesive film or with fixing clamps
- Consists of scale and scanning head
- Version available for high vacuum (see Product Information document)

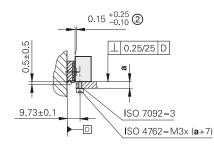
- 2 = Use additional fixing clamp pairs depending on the measuring length (ML)
- 3 = Adhesive
- 4 = Mounting clearance between scanning head and scale
- 5 = Optical centerline
- 6 = Direction of scanning unit motion for output signals in accordance with interface description

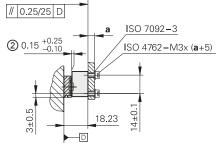
Scale	LIC 4003				
Measuring standard Coefficient of linear expansion*	METALLUR graduation on glass ceramic or glass $\alpha_{therm} \approx 8 \times 10^{-6} \text{ K}^{-1}$ (glass) $\alpha_{therm} = (0\pm0.5) \times 10^{-6} \text{ K}^{-1}$ (Robax glass ceramic)				
Accuracy grade*	±1 μm (only for Robax glass ceramic), ±3 μm, ±5 μm				
Baseline error	$\leq \pm 0.275 \mu\text{m}/10 \text{mm}$				
Measuring length ML* in mm	240 340 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040 (Robax glass ceramic up to max. ML 1640)				
Mass	3 g + 0.11 g/mm measuring length				


Scanning head	LIC 411	LIC 419 F	LIC 419M		LIC 419P	
Interface	EnDat 2.2	Fanuc Serial Interface αi Interface	Mitsubishi high speed interface		Panasonic serial interface	
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	Pana01	
Measuring step*	0.01 μm (10 nm) 0.005 μm (5 nm) 0.001 μm (1 nm)	0.01 μm (10 nm) 0.005 μm (5 nm)				
Calculation time t _{cal} Clock frequency	≤ 5 μs 16 MHz	-				
Traversing speed ¹⁾	≤ 600 m/min					
Interpolation error	±20 nm					
Electrical connection*	Cable, 1 m or 3 m with 8	3-pin M12 coupling (male)	or 15 D-sub c	connector (ma	ale)	
Cable length (with HEIDENHAIN cable)	≤ 100 m	≤ 50 m ≤ 30 m ≤			≤ 50 m	
Voltage supply	DC 3.6 V to 14 V					
Power consumption ¹⁾ (max.)	<i>At 3.6 V:</i> ≤ 700 mW <i>At 14 V:</i> ≤ 800 mW	<i>At 3.6 V:</i> ≤ 850 mW <i>At 14 V:</i> ≤ 950 mW				
Current consumption (typical)	At 5 V: 75 mA (without load)	At 5 V: 95 mA (without lo	oad)			
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068- \leq 1000 m/s ² (EN 60068-	² (EN 60068-2-6) ² (EN 60068-2-27)				
Operating temperature	–10 °C to 70 °C	–10 °C to 70 °C				
Mass Scanning head Connecting cable Connector	≤ 18 g (without cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-s</i> i	sub connector: 32 g				

* Please select when ordering ¹⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*


Robax is a registered trademark of Schott-Glaswerke, Mainz, Germany.


LIC 4115, LIC 4195 Absolute linear encoder for measuring lengths up to 28 m


- For measuring steps down to 1 nm
- Steel scale-tape is drawn into aluminum extrusions and tensioned
- Consists of scale and scanning head

Possibilities for mounting the scanning head

- F = Machine guideway
- Ρ = Gauging points for alignment
- = Mounting error plus dynamic guideway error
- © = Code start value: 100 mm
- S = Beginning of measuring length ML
- ① = Carrier segment
- ② = Spacer for measuring lengths from 3040 mm
- 1 = Optical centerline
- 2 = Mounting clearance between scanning head and extrusion
- 3 = Direction of scanning unit motion for output signals in accordance with interface description

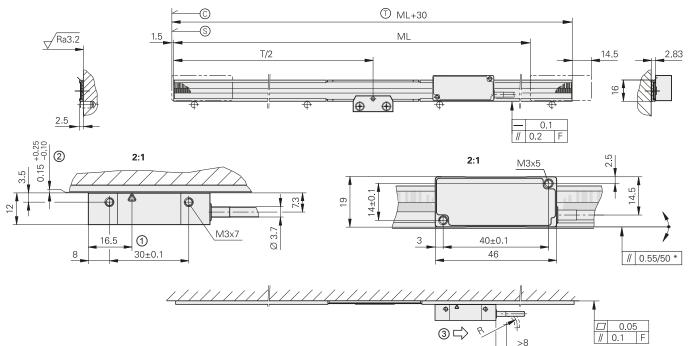
mm

 \Box

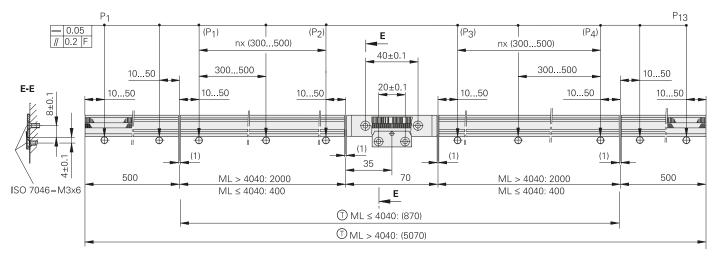
Tolerancing ISO 8015

ISO 2768 - m H

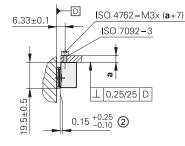
< 6 mm: ±0.2 mm

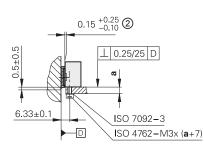


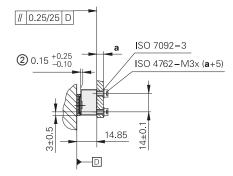
Scale	LIC 4005						
Measuring standard Coefficient of linear expansion		Steel scale tape with METALLUR absolute and incremental track Depends on the mounting surface					
Accuracy grade	±5 µm						
Baseline error	≤ ±0.750 µm/50 mm (ty	oical)					
Measuring length ML* in mm							
	Larger measuring length scale-carrier sections	s up to 28440 mm with a	single-section	n scale tape a	and individual		
Mass Scale tape Parts kit Scale-tape carrier	31 g/m 80 g + n ⁴⁾ × 27 g 187 g/m	$80\mathrm{g} + \mathrm{n}^{4} \times 27\mathrm{g}$					
Scanning head	LIC 411	LIC 419 F	LIC 419M		LIC 419P		
Interface	EnDat 2.2	Fanuc Serial Interface αi interface	Mitsubishi interface	high speed	Panasonic serial interface		
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	Pana01		
Measuring step*	0.01 μm (10 nm) 0.005 μm (5 nm) 0.001 μm (1 nm)		0.01 μm (10 0.005 μm (!) nm) ³⁾ 5 nm) ²⁾			
Calculation time t _{cal} Clock frequency	≤ 5 µs 16 MHz	_	1				
Traversing speed ¹⁾	≤ 600 m/min	I					
Interpolation error	±20 nm						
Electrical connection*	Cable, 1 m or 3 m with 8	B-pin M12 coupling (male) o	or 15 D-sub c	onnector (ma	ale)		
Cable length (with HEIDENHAIN cable)	≤ 100 m	≤ 50 m	≤ 30 m		≤ 50 m		
Voltage supply	DC 3.6 V to 14 V				l		
Power consumption ¹⁾ (max.)	<i>At 3.6 V:</i> ≤ 700 mW <i>At 14 V:</i> ≤ 800 mW	<i>At 3.6 V:</i> ≤ 850 mW <i>At 14 V:</i> ≤ 950 mW					
Current consumption (typical)	At 5 V: 75 mA At 5 V: 95 mA (without load) (without load)						
Vibration 55 Hz to 2000 Hz Shock 6 ms	$\leq 500 \text{ m/s}^2 \text{ (EN 60068-2-6)} \\ \leq 1000 \text{ m/s}^2 \text{ (EN 60068-2-27)}$						
Operating temperature	–10 °C to 70 °C						
Mass Scanning head Connecting cable Connector	≤ 18 g (without cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-sub connector:</i> 32 g						
* Please select when ordering							


* Please select when ordering ¹⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders* ²⁾ Up to measuring length ML \leq 10040 ³⁾ Up to measuring length ML \leq 20040 ⁴⁾ n = 1 for ML 3140 mm to 5040 mm; n = 2 for ML 5140 mm to 7040 mm; etc.*

LIC 4117, LIC 4197 Absolute linear encoder for measuring lengths up to 6 m


- For measuring steps down to 1 nm •
- Steel scale-tape is drawn into aluminum extrusions and fixed at center
- Consists of scale and scanning head

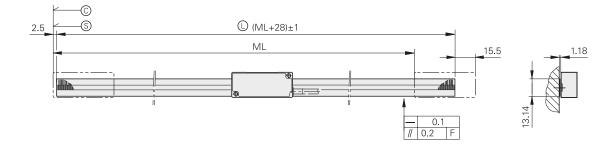

ML > 4040: P1 ... P13 ML ≤ 4040: (P1 ... P4)

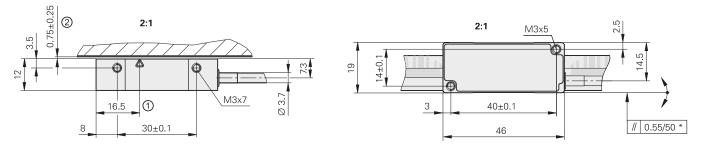


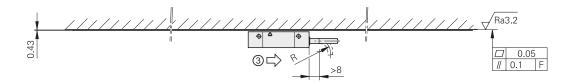
Possibilities for mounting the scanning head

mm ✐⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

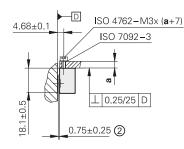
- F = Machine guideway
- Ρ = Gauging points for alignment
- * = Mounting error plus dynamic guideway error
- © = Code start value: 100 mm
- S = Beginning of measuring length ML
- (T) = Carrier segment
- 1 = Optical centerline
- 2 = Mounting clearance between scanning head and extrusion
- 3 = Direction of scanning unit motion for output signals in accordance with interface description

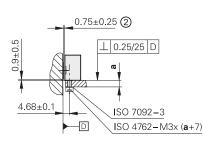


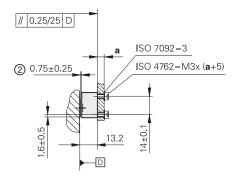

Scale	LIC 4007					
Measuring standard Coefficient of linear expansion	Steel scale tape with ME $\alpha_{\text{therm}} \approx 10 \times 10^{-6} \text{ K}^{-1}$	Steel scale tape with METALLUR absolute and incremental track $\alpha_{therm}\approx 10\times 10^{-6}~\text{K}^{-1}$				
Accuracy grade*	±3 µm (up to ML 1040),	±5 µm (starting from ML 1	240), ±15 μm ¹⁾			
Baseline error	≤ ±0.750 µm/50 mm (typ	pical)				
Measuring length ML* in mm		40 1040 1240 1440 40 3840 4040 4240	1640 1840 2040 22 4440 4640 4840 50	40 2440 2640 2840 40 5240 5440 5640		
Mass Scale tape Parts kit Scale-tape carrier	31 g/m 20 g 68 g/m					
Scanning head	LIC 411	LIC 419F	LIC 419 M	LIC 419P		
Interface	EnDat 2.2	Fanuc Serial Interface αi interface	Mitsubishi high speed interface	Panasonic serial interface		
Ordering designation*	EnDat22	Fanuc05	Mit03-4 Mit02-2	Pana01		
Measuring step*	0.01 μm (10 nm) 0.01 μm (10 nm) 0.005 μm (5 nm) 0.005 μm (5 nm) 0.001 μm (1 nm) 0.005 μm (5 nm)					
Calculation time t _{cal} Clock frequency	≤ 5 μs 16 MHz	-				
Traversing speed ²⁾	≤ 600 m/min					
Interpolation error	±20 nm					
Electrical connection*	Cable, 1 m or 3 m with 8	pin M12 coupling (male) c	or 15 D-sub connector (ma	le)		
Cable length (with HEIDENHAIN cable)	≤ 100 m	≤ 50 m	≤ 30 m	≤ 50 m		
Voltage supply	DC 3.6 V to 14 V					
Power consumption ²⁾ (max.)	$At 3.6 V: \leq 700 \text{ mW}$ $At 3.6 V: \leq 850 \text{ mW}$ $At 14 V: \leq 800 \text{ mW}$ $At 14 V: \leq 950 \text{ mW}$					
Current consumption (typical)	At 5 V: 75 mA (without load)At 5 V: 95 mA (without load)					
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)					
Operating temperature	-10 °C to 70 °C					
Mass Scanning head Connecting cable Connector	≤ 18 g (without cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-su</i>	ıb connector: 32 g				


* Please select when ordering
 ¹⁾ ±5 μm after linear length-error compensation in the evaluation electronics
 ²⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*

LIC 4119, LIC 4199 Absolute linear encoder for measuring lengths up to 1 m


- For measuring steps down to 1 nm
- Steel scale tape cemented on mounting surface
- Consists of scale and scanning head

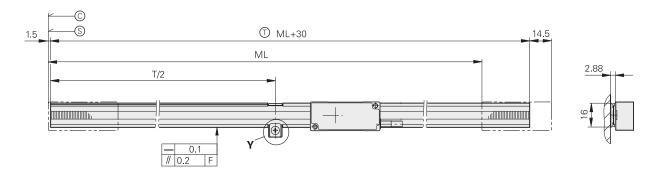


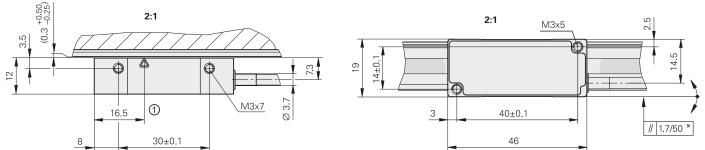


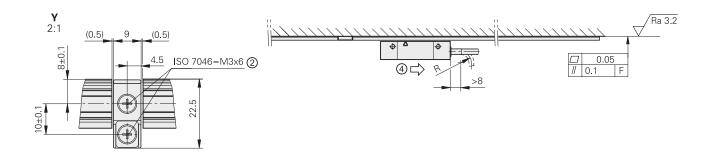
Possibilities for mounting the scanning head

mm \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

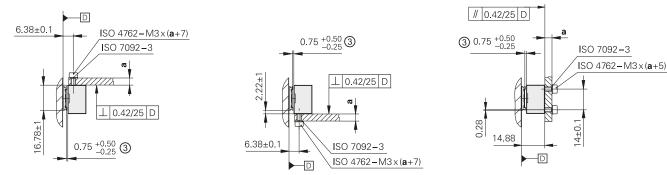
- F = Machine guideway
- * = Mounting error plus dynamic guideway error
- © = Code start value: 100 mm
- S = Beginning of measuring length ML
- () = Scale tape length
- 1 = Optical centerline
- 2 = Mounting clearance between scanning head and scale
- 3 = Direction of scanning unit motion for output signals in accordance with interface description




Scale	LIC 4009				
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR absolute and incremental track $\alpha_{therm}\approx$ 10 x 10 $^{-6}$ K $^{-1}$				
Accuracy grade*	±3 μm, ±15 μm ¹⁾				
Baseline error	$\leq \pm 0.750 \ \mu\text{m}/50 \ \text{mm}$ (typical)				
Measuring length ML* in mm	70 120 170 220 270 320 370 420 520 620 720 820 920 1020				
Mass	31 g/m				
Scanning head	LIC 411	LIC 419F	LIC 419M	LIC 419P	
Interface	EnDat 2.2	Fanuc Serial Interface αi interface	Mitsubishi high speed interface	Panasonic serial interface	
Ordering designation*	EnDat22	Fanuc05	Mit03-4 Mit02-2	Pana01	
Measuring step*	0.01 μm (10 nm) 0.005 μm (5 nm) 0.001 μm (1 nm)	1			
Calculation time t _{cal} Clock frequency	≤ 5 µs 16 MHz	_			
Traversing speed ²⁾	≤ 600 m/min				
Interpolation error	±20 nm				
Electrical connection*	Cable, 1 m or 3 m with 8-pin M12 coupling (male) or 15 D-sub connector (male)				
Cable length (with HEIDENHAIN cable)	≤ 100 m	≤ 50 m	≤ 30 m	≤ 50 m	
Voltage supply	DC 3.6 V to 14 V				
Power consumption ²⁾ (max.)	<i>At 3.6 V:</i> ≤ 700 mW <i>At 14 V:</i> ≤ 800 mW	$\begin{array}{ll} At \ 3.6 \ V: &\leq 850 \ {\rm mW} \\ At \ 14 \ V: &\leq 950 \ {\rm mW} \end{array}$			
Current consumption (typical)	<i>At 5 V:</i> 75 mA (without load)	At 5 V: 95 mA (without load)			
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068- \leq 1000 m/s ² (EN 60068-	68-2-6) 68-2-27)			
Operating temperature	-10 °C to 70 °C				
Mass Scanning head Connecting cable Connector	 ≤ 18 g (without cable) 20 g/m M12 coupling: 15 g; D-sub connector: 32 g 				


* Please select when ordering
 ¹⁾ ±5 µm after linear length-error compensation in the subsequent electronics
 ²⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*

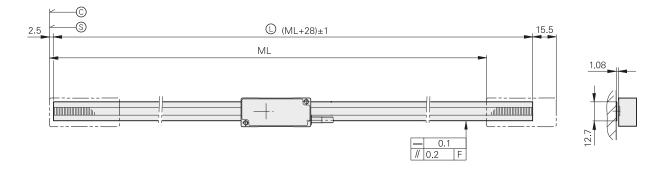
LIC 2117, LIC 2197 Absolute linear encoder for measuring lengths up to 3 m

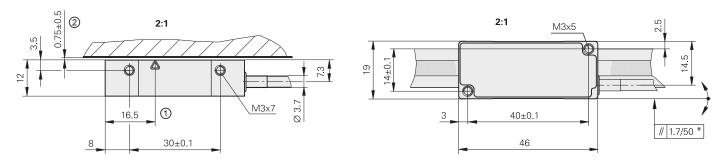

- Measuring step 100 nm or 50 nm
- Steel scale-tape is drawn into aluminum extrusions and fixed at center •
- Consists of scale and scanning head

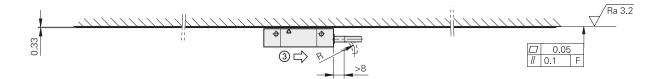
Possibilities for mounting the scanning head

mm \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

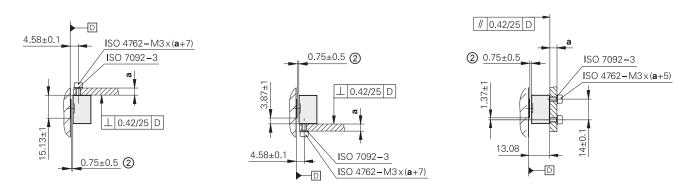
- F = Machine guideway
- * = Max. change during operation
- © = Code start value: 100 mm
- © = Beginning of measuring length ML
- \bigcirc = Carrier segment
- 1 = Optical centerline
- 2 = Mating threaded hole, M3, 5 mm deep
- 3 = Mounting clearance between scanning head and scale tape
- 4 = Direction of scanning unit motion for output signals in accordance with interface description




Scale	LIC 2107				
Measuring standard Coefficient of linear expansion	Steel scale tape with absolute track $\alpha_{\text{therm}} \approx 10 \times 10^{-6} \text{ K}^{-1}$				
Accuracy grade	±15 µm				
Measuring length ML* in mm	120 320 520 770 1020 1220 1520 2020 2420 3020 (measuring lengths greater than 6020 mm upon request)				
Mass Scale tape Scale-tape carrier	20 g/m 70 g/m				
Scanning head	LIC 211	LIC 219F	LIC 219M		LIC 219P
Interface	EnDat 2.2	Fanuc Serial Interface αi interface	Mitsubishi high speed interface		Panasonic serial interface
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	Pana01
Measuring step*	0.1 μm (100 nm) 0.05 μm (50 nm)				
Calculation time t _{cal} Clock frequency	≤ 5 μs ≤ 16 MHz				
Traversing speed ¹⁾	≤ 600 m/min				
Interpolation error	±2 µm				
Electrical connection*	Cable, 1 m or 3 m with 8-pin M12 coupling (male) or 15 D-sub connector (male)				ile)
Cable length (with HEIDENHAIN cable)			≤ 30 m		≤ 50 m
Voltage supply	DC 3.6 V to 14 V	1	1		
Power consumption ¹⁾ (max.)	<i>At 3.6 V:</i> ≤ 700 mW <i>At 14 V:</i> ≤ 800 mW	$At 3.6 V: \le 850 \text{ mW}$ $At 14 V: \le 950 \text{ mW}$			
Current consumption (typical)	<i>At 5 V:</i> 75 mA (without load)	At 5 V: 95 mA (without load)			
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Operating temperature	–10 °C to 70 °C				
Mass Scanning head Connecting cable Connector	≤ 18 g (without cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-su</i>	sub connector: 32 g			


* Please select when ordering ¹⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*

LIC 2119, LIC 2199 Absolute linear encoder for measuring lengths up to 3 m

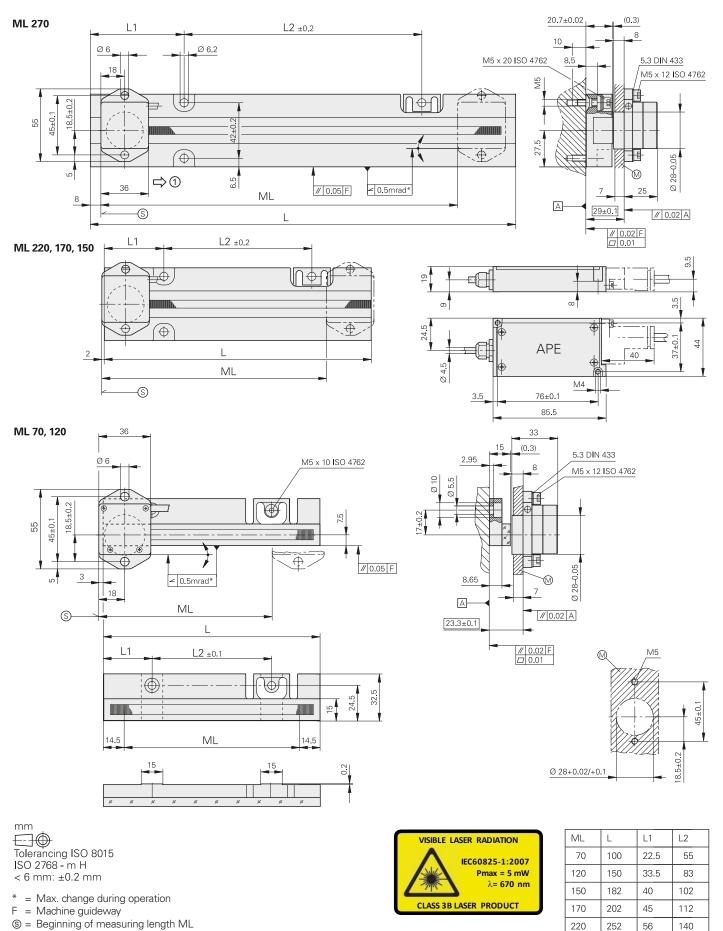

- Measuring step 0.1 µm or 0.05 µm
- Steel scale tape cemented on mounting surface
- · Consists of scale and scanning head

Possibilities for mounting the scanning head

mm €]⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- F = Machine guideway
- * = Max. change during operation
- © = Code start value: 100 mm
- S = Beginning of measuring length ML
- \bigcirc = Scale tape length
- 1 = Optical centerline
- 2 = Mounting clearance between scanning head and scale tape
- 3 = Direction of scanning unit motion for output signals in accordance with interface description

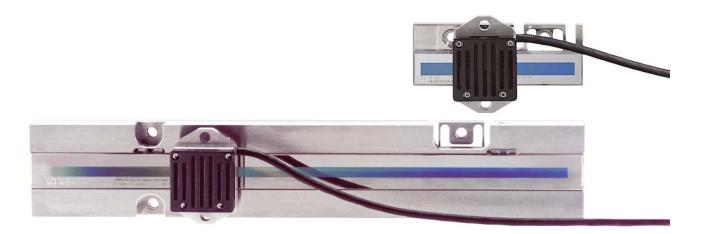
Scale	LIC 2109				
Measuring standard Coefficient of linear expansion	Steel scale tape with absolute track $\alpha_{\text{therm}} \approx 10 \times 10^{-6} \text{ K}^{-1}$				
Accuracy grade	±15 μm				
Measuring length ML* in mm	120 320 520 770 1020 1220 1520 2020 2420 3020 (measuring lengths greater than 6020 mm upon request)				
Mass	20 g/m				
Scanning head	LIC 211	LIC 219F	LIC 219M		LIC 219P
Interface	EnDat 2.2	Fanuc Serial Interface αi interface	Mitsubishi high speed interface		Panasonic serial interface
Ordering designation*	EnDat22	Fanuc05	Mit03-4	Mit02-2	Pana01
Measuring step*	0.1 μm (100 nm) 0.05 μm (50 nm)				
Calculation time t _{cal} Clock frequency	≤ 5 μs ≤ 16 MHz				
Traversing speed ¹⁾	≤ 600 m/min				
Interpolation error	±2 μm				
Electrical connection*	Cable, 1 m or 3 m with 8-pin M12 coupling (male) or 15 D-sub connector (male)				ale)
Cable length (with HEIDENHAIN cable)	≤ 100 m	≤ 50 m	≤ 30 m		≤ 50 m
Voltage supply	age supply DC 3.6 V to 14 V				
Power consumption ¹⁾ (max.)	<i>At 3.6 V:</i> ≤ 700 mW <i>At 14 V:</i> ≤ 800 mW	$\begin{array}{ll} At \ 3.6 \ V: &\leq 850 \ {\rm mW} \\ At \ 14 \ V: &\leq 950 \ {\rm mW} \end{array}$			
Current consumption (typical)	<i>At 5 V:</i> 75 mA (without load)	At 5 V: 95 mA (without load)			
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)				
Operating temperature	–10 °C to 70 °C				
Mass Scanning head Connecting cable Connector	≤ 18 g (without cable) 20 g/m <i>M12 coupling:</i> 15 g; <i>D-su</i>				


* Please select when ordering ¹⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders*

Incremental linear encoders with very high accuracy

• Measuring steps to 1 nm

Measuring standard is fastened by screws

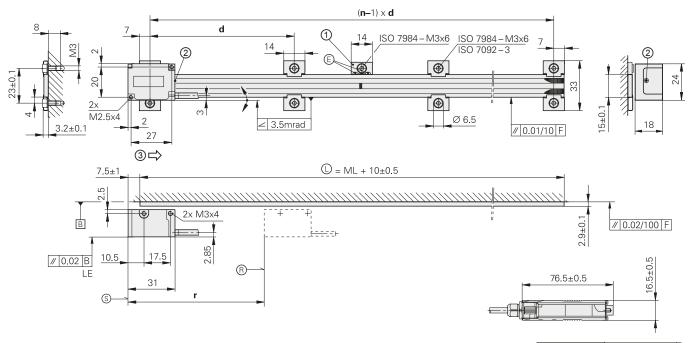

270

71

180

322

1 = Direction of scanning unit motion for output signals in accordance with interface description

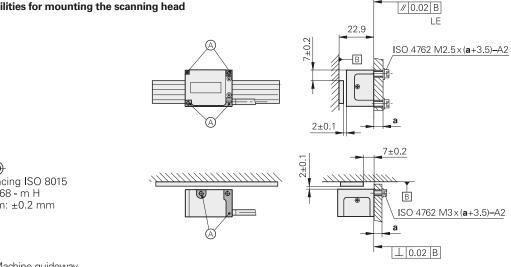

Specifications	LIP 382			
Measuring standard Coefficient of linear expansion	DIADUR phase grating on Zerodur glass ceramic; grating period 0.512 μ m $\alpha_{therm} = (0\pm0.1) \times 10^{-6} \text{ K}^{-1}$			
Accuracy grade	±0.5 µm (higher accuracy grades upon request)			
Baseline error	≤ ±0.075 μm/5 mm			
Measuring length ML* in mm	70 120 150 170 220 270			
Reference marks	No			
Interface	\sim 1 V _{PP}			
Integrated interpolation Signal period	– 0.128 μm			
Cutoff frequency -3 dB	≥ 1 MHz			
Scanning frequency* Edge separation a	-			
Traversing speed	≤ 7.6 m/min			
Interpolation error Position noise RMS	±0.01 nm 0.06 nm (1 MHz ¹⁾)			
Laser	Scanning head and scale mounted: Class 1 Scanning head not mounted: Class 3B Laser diode used: Class 3B			
Electrical connection	0.5 m cable to interface electronics (APE), separate adapter cable (1 m/3 m/6 m/9 m) connectable to APE			
Cable length	See interface description, but \leq 30 m (with HEIDENHAIN cable)			
Power supply	DC 5 V ±0.25 V			
Current consumption	< 190 mA			
Vibration 55 Hz to 2000 Hz Shock 11 ms	$\leq 4 \text{ m/s}^2 \text{ (EN 60068-2-6)}$ $\leq 50 \text{ m/s}^2 \text{ (EN 60068-2-27)}$			
Operating temperature	0 °C to 40 °C			
Mass Scanning head Interface electronics Linear scale Connecting cable	150 g 100 g <i>ML 70 mm</i> : 260 g, <i>ML ≥ 150 mm</i> : 700 g 38 g/m			

* Please select when ordering
 ¹⁾ –3 dB cutoff frequency of the subsequent electronics

LIP 211, LIP 281, LIP 291

Incremental linear encoders for very high accuracy and high position stability

- · For measuring steps of 1 nm and smaller
- For high traversing speeds and large measuring lengths •
- Measuring standard is fastened by fixing clamps
- Consists of scale and scanning head •


Ø 3.7

Distance r depending on the scale variant (standard: r = ML/2) Distance n of the fixing clamp pair: (clamps on both sides)

ML	n	[
ML ≤ 70	2	
$70 < ML \le 100$	3	
$100 < ML \le 200$	4	

Distance d between fixing clamps: $\mathbf{d} = \frac{\mathsf{ML} - 4}{\mathbf{n} - 1}$

Possibilities for mounting the scanning head

mm $\square \bigcirc$ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

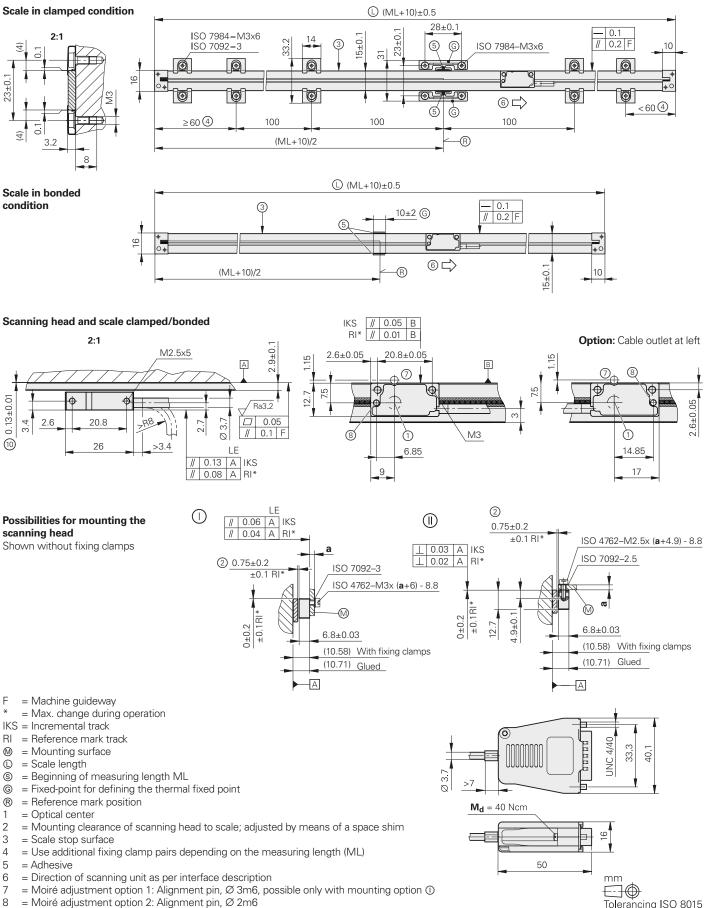
- F = Machine guideway
- R = Reference mark position
- \bigcirc = Scale length
- S = Beginning of measuring length ML
- © = Adhesive according to Mounting Instructions
- A = Mounting surface
- 1 = Mounting element for hard adhesive bond in order to define the thermal fixed point
- 2 = Max. protrusion of screw head: 0.5 mm
- 3 = Direction of scanning unit motion for output signals in accordance with interface description

5±0.5

33.3 42.

UNC 4/40

Scale	LIP 20	LIP 201												
Measuring standard Coefficient of linear expansion	OPTO α _{therm}	TODUR phase grating on Zerodur glass ceramic; grating period 2.048 μm $_{erm}$ = (0±0.1) x 10^{-6} K^{-1}												
Accuracy grade*	±1 µm	μm ±3 μm (higher accuracy grades upon request)				st)								
Baseline error	≤ ±0.1	25 µm/5	ōmm											
Measuring length ML* in mm	20 270 620 970	30 320 670 1020	50 370 720	70 420 770	120 470 820	170 520 870	220 570 920	370 720 1140 2040	420 770 1240 2240	470 820 1340 2440	520 870 1440 2640	570 920 1540 2840	620 970 1640 3040	670 1020 1840
Reference marks	One at	One at midpoint of measuring length												
Mass	1.1 g +	0.11 g/ı	mm me	easuring	length									


Scanning head	LIP 21	LIP 29 F	LIP 29M	LIP 28			
Interface	EnDat 2.2 ¹⁾	Fanuc Serial Interface ¹⁾ Mitsubishi high speed Interface ¹⁾		∼ 1 V _{PP}			
Ordering designation	EnDat22	Fanuc02	Mit02-4	-			
Integrated interpolation	16384-fold (14 bits)	1	1	-			
Clock frequency	≤ 16 MHz	-		-			
Calculation time t _{cal}	≤ 5 µs	-		-			
Measuring step	0.03125 nm (31.25 pm)			-			
Signal period	-			0.512 µm			
Cutoff frequency –3 dB	-	-					
Traversing speed	≤ 120 m/min	≤ 120 m/min					
Interpolation error Position noise RMS	±0.4 nm ⁴⁾ 0.12 nm			±0.4 nm ⁴⁾ 0.12 nm (3 MHz ³⁾)			
Electrical connection*	Cable, 0.5 m, 1 m, 2 m,	or 3 m, with 15-pin D-sub (connector (male); interface	e electronics in connector			
Cable length	See interface description	n, but ≤ 30 m (with HEIDE)	NHAIN cable)				
Voltage supply	DC 3.6 V to 14 V			DC 5 V ±0.25 V			
Power consumption ²⁾ (max.)	At 14 V: 2270 mW; at 3.0	<i>6 V:</i> 2400 mW		-			
Current consumption	At 5 V: 300 mA (without	load, typical)		≤ 390 mA			
Laser	Scanning head and scale mounted: class 1; scanning head not mounted: class 3B						
Vibration 55 Hz to 2000 Hz Shock 11 ms	$\leq 200 \text{ m/s}^2 (\text{IEC } 60068-2-6)$ $\leq 400 \text{ m/s}^2 (\text{IEC } 60068-2-27)$						
Operating temperature	0 °C to 50 °C						
Mass	Scanning head: 59 g; connector: 140 g; cable: 22 g/m						

* Please select when ordering; ¹⁾ Absolute position value after traverse of the reference mark in "position value 2"
 ²⁾ See *General electrical information* in the brochure *Interfaces of HEIDENHAIN Encoders* ³⁾ –3 dB cutoff frequency of the subsequent electronics
 ⁴⁾ With HEIDENHAIN interface electronics

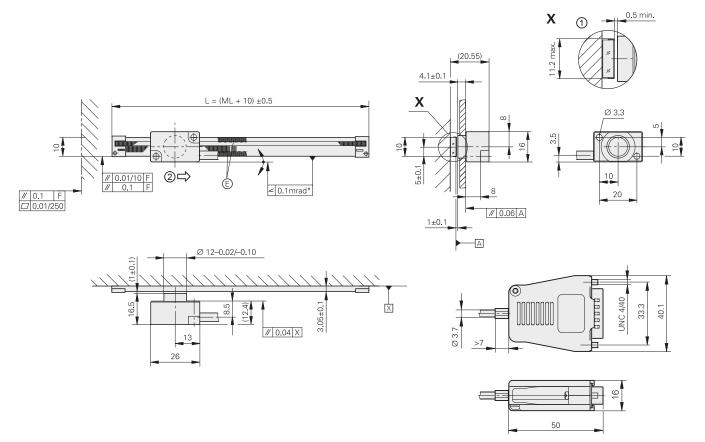
LIP 6071, LIP 6081

Incremental linear encoders with very high accuracy

- For limited installation space
- For measuring steps down to 2 nm
- For high traversing speeds and large measuring lengths
- Position detection through homing track and limit switches
- Measuring standard is fastened by adhesive or fixing clamps

tolerancing ISO 8015 ISO 2768 - m H ≤ 6 mm: ±0.2 mm

9 = Recommendation: Ø 3
10 = Adhesive tape (only if the scale is glued)


Scale	LIP 6001						
Measuring standard* Coefficient of linear expansion	OPTODUR pr $\alpha_{therm} = (0\pm 0$ $\alpha_{therm} \approx 8 \times 10^{-10}$	nase grating on .1) x 10 ⁻⁶ K ⁻¹ (Z 0 ⁻⁶ K ⁻¹ (glass)	Zerodur glass Zerodur glass c	ceramic; gratin eramic)	g period 8 µm		
Accuracy grade*	±1 µm (only f	or Zerodur glas	s ceramic up to	o measuring ler	ngth 1020 mm);	; ±3 µm	
Baseline error	≤ ±0.175 µm/	5 mm					
Measuring length ML* in mm	20 30 620 670 1640 1840	620 670 720 770 820 870 920 970 1020 1140 1240 1340 1440 1540					
Reference mark	One at midpo	int of measurin	ig length				
Mass	1.1 g + 0.11 g,	/mm measuring	g length				
Scanning head	LIP 608	LIP 607					
Interface	∕~ 1 V _{PP}	TTL ¹⁾					
Integrated interpolation* signal period	_ 4 μm	5-fold 0.8 µm	10-fold 0.4 µm	25-fold 0.16 µm	50-fold 0.08 µm	100-fold 0.04 µm	500-fold 0.008 µm
Cutoff frequency –3 dB	≥ 1 MHz	1	1	1	1	1	1
Scanning frequency	-	– – ≤ 312.5 kHz	– ≤ 312.5 kHz ≤ 156.25 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 125 kHz ≤ 62.5 kHz ≤ 31.25 kHz	≤ 62.5 kHz ≤ 31.25 kHz ≤ 15.63 kHz	≤ 12.5 kHz ≤ 6.25 kHz ≤ 3.13 kHz
Edge separation a	-	– – ≥ 0.135 µs	– ≥ 0.07 μs ≥ 0.135 μs	≥ 0.03 µs ≥ 0.07 µs ≥ 0.135 µs	1	1	1
Traversing speed ²⁾	≤ 240 m/min	- - ≤ 75 m/min	- ≤ 75 m/min ≤ 37 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min	≤ 15 m/min ≤ 7.5 m/min ≤ 3.7 m/min	≤ 3 m/min ≤ 1.5 m/min ≤ 0.75 m/min
Interpolation error Position noise RMS	±4 nm 0.4 nm (1 MHZ ³⁾)	_	I	1	1	1	1
Electrical connection*	1 V _{PP} : Cable,	n the left/right 0.5 m, 1 m, or 0.5 m or 1 m,	3 m, D-sub co	nnector (male)			
Cable length		HAIN cable: Ho adjustment wit			emental: ≤ 20 n	n;	
Voltage supply	DC 5 V ±0.5 V	/					
Current consumption	≤ 150 mA	≤ 250 mA (wi	thout load)				
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (\leq 1000 m/s ² (\leq 500 m/s ² (IEC 60068-2-6) \leq 1000 m/s ² (IEC 60068-2-27)					
Operating temperature	–10 °C to 70 °	C					
Mass Scanning head Connector Connecting cable		5 g (without cable) . K LIP 608 \approx 71 g; AK LIP 607 \approx 74 g					

* Please select when ordering ¹⁾TTLx1 unclocked possible upon request

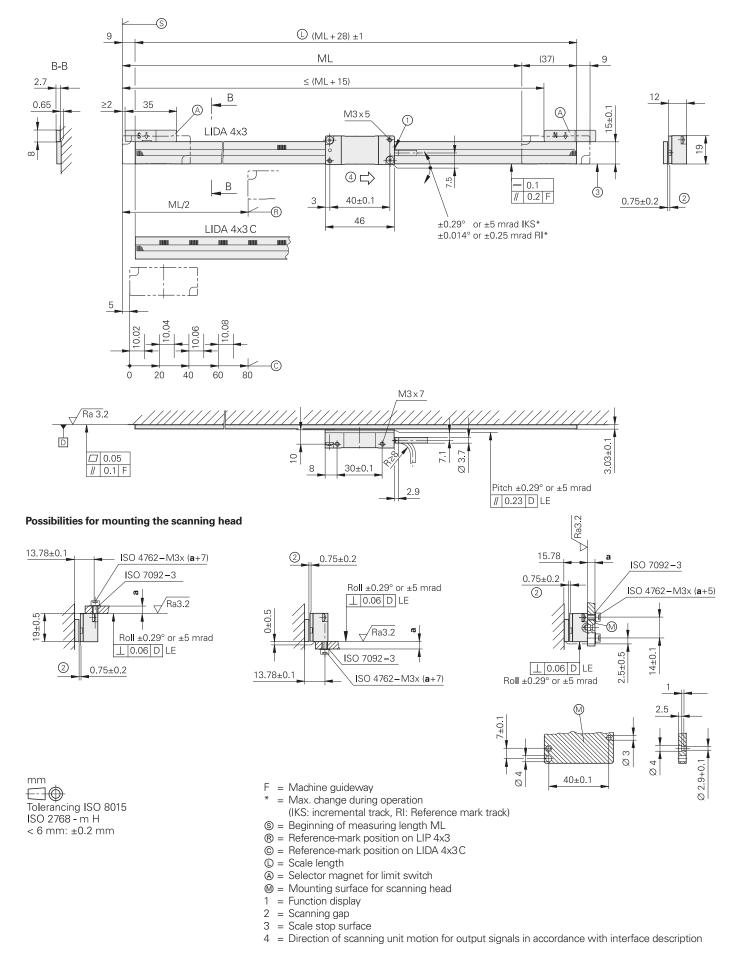
 $^{2)}$ Maximale Maximum traversing speed for referencing: 16.8 m/min (70 kHz) $^{3)}$ –3dB cutoff frequency of the subsequent electronics

LIF 471, LIF 481 Incremental linear encoders for simple installation

- For measuring steps down to 10 nm ٠
- Position detection through homing track and limit switches
- Glass scale cemented with adhesive film
- Consists of scale and scanning head
- Versions available for high vacuum (see Product Information document)

mm €-]⊕ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- = Max. change during operation
- F = Machine guideway
- ML = Measuring length
- € = Epoxy for ML < 170
- = Dimensions of limit plate 1
- 2 = Direction of scanning unit motion for output signals in accordance with interface description


Scale	LIF 401	R											
Measuring standard* Coefficient of linear expansion	SUPRA α_{therm} α_{therm}	ADUR p = (0±0. ≈ 8 x 10	hase gr 1) x 10 ⁻ 0 ⁻⁶ K ⁻¹ (ating or ⁶ K ^{–1} (Z (glass)	n Zerodı erodur (ur glass glass ce	s ceram eramic)	ic or gla	ss; grat	ing peri	iod 8 µn	N	
Accuracy grade*	±1 µm	1 μ m (only for Zerodur glass ceramic up to measuring length 1020 mm), $\pm 3~\mu$ m											
Baseline error	$\leq \pm 0.2$	25 µm/!	5 mm										
Measuring length ML* in mm	70 720	120 770	170 820	220 870	270 920	320 970	370 1020	420 1140	470 1240	520 1340	570 1440	620 1540	670 1640
Reference marks	One at	Dne at midpoint of measuring length											
Mass	0.8 g +	0.08 g,	/mm m	easurin	g length	1							

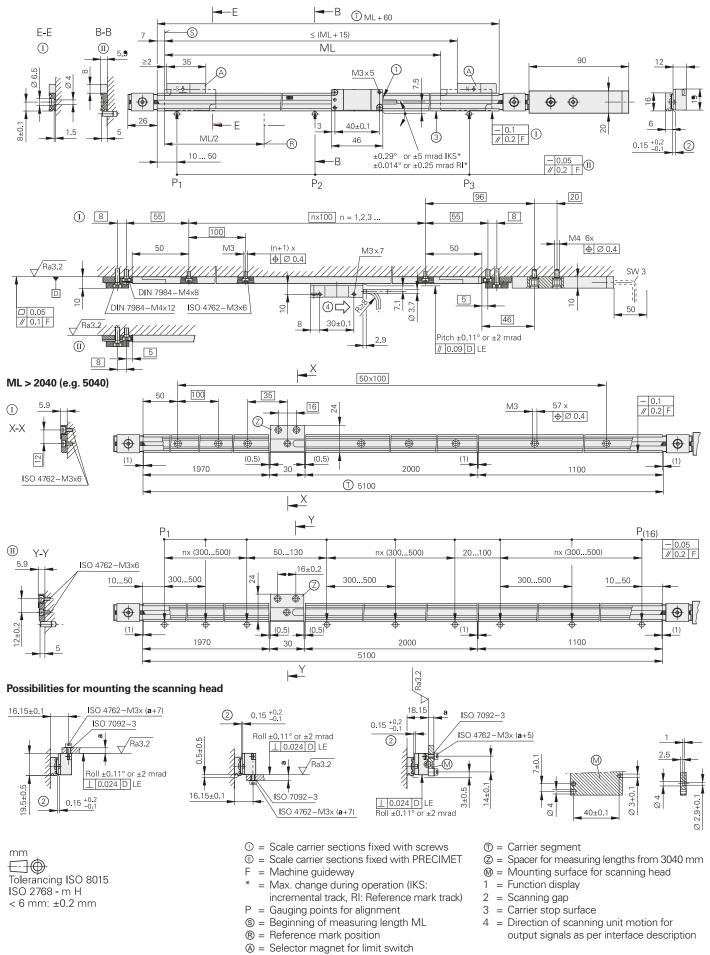
Scanning head	LIF 48	LIF 47					
Interface	∕~ 1 V _{PP}						
Integrated interpolation* Signal period	– 4 μm	5-fold 0.8 µm	10-fold 0.4 µm	20-fold 0.2 µm	50-fold 0.08 μm	100-fold 0.04 μm	
Cutoff frequency –3 dB	≥ 1 MHz	_					
Scanning frequency*	-	≤ 500 kHz ≤ 250 kHz ≤ 125 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 250 kHz ≤ 125 kHz ≤ 62.5 kHz	≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	
Edge separation a	-	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs	≥ 0.040 µs ≥ 0.080 µs ≥ 0.175 µs	
Traversing speed ¹⁾	≤ 240 m/min	≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 24 m/min ≤ 12 m/min ≤ 6 m/min	≤ 12 m/min ≤ 6 m/min ≤ 3 m/min	
Interpolation error Position noise RMS	±12 nm 0.6 nm (1 MHz ²⁾)	-	1				
Electrical connection*	Cable, 0.5 m, 1 m	n, or 3 m, with 15	i-pin D-sub conne	ector (male); inter	face electronics ir	n connector	
Cable length	See interface des Incremental: ≤ 30			IEIDENHAIN cab	le)		
Power supply	DC 5 V ±0.25 V						
Current consumption	< 175 mA	< 180 mA (with	out load)				
Vibration 55 Hz to 2000 Hz Shock 11 ms	\leq 200 m/s ² (EN 6 \leq 500 m/s ² (EN 6	m/s ² (EN 60068-2-6) m/s ² (EN 60068-2-27)					
Operating temperature	0 °C to 50 °C						
Mass Scanning head* Connecting cable Connector	For scale of Zeroo For scale of glass 38 g/m 75 g		25 g				

* Please select when ordering
 ¹⁾ Maximum traversing speed for referencing: 9.6 m/min (40 kHz)
 ²⁾ -3 dB cutoff frequency of the subsequent electronics

LIDA 473, LIDA 483

- Incremental linear encoders with limit switches
- For measuring steps down to 50 nm
- Measuring standard of glass or glass ceramic
- Glass scale cemented with adhesive film
- Consists of scale and scanning head

Scale	IDA 403				
Measuring standard Coefficient of linear expansion*	ETALLUR scale grating on glass ceramic or glass; grating period 20 μ m $_{nerm} \approx 8 \times 10^{-6} \text{ K}^{-1}$ (glass) $_{nerm} = (0 \pm 0.5) \times 10^{-6} \text{ K}^{-1}$ (Robax glass ceramic)				
Accuracy grade*	$\pm 1~\mu m$ (only for Robax glass ceramic), $\pm 3~\mu m,~\pm 5~\mu m$				
Baseline error	≤ ±0.275 μm/10 mm				
Measuring length ML* in mm	240 340 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040 (Robax glass ceramic up to max. ML 1640)				
Reference marks*	DA 4x3: One at midpoint of measuring length; LIDA 4x3C: Distance-coded				
Mass	3 g + 0.11 g/mm measuring length				


Scanning head	LIDA 48	LIDA 47					
Interface	\sim 1 V _{PP}						
Integrated interpolation* Signal period	– 20 μm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 µm	100-fold 0.2 μm		
Cutoff frequency -3 dB	≥ 400 kHz	-	1	1			
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz		
Edge separation a ¹⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs		
Traversing speed ¹⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min		
Interpolation error	±45 nm	-	1	1			
Limit switches	L1/L2 with two diffe	erent magnets; <i>outpu</i>	<i>it signals</i> : TTL (withou	ut line driver)			
Electrical connection	Cable, 0.5 m, 1 m, 0	or 3 m, with 15-pin D	-sub connector (male	2)			
Cable length	See interface descr	iption, but <i>limit:</i> \leq 20	m (with HEIDENHAI	N cable)			
Voltage supply	DC 5 V ±0.5 V						
Current consumption	< 130 mA	< 150 mA (without	load)				
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60 \leq 1000 m/s ² (EN 60	60068-2-6) 60068-2-27)					
Operating temperature	–10 °C to 70 °C						
Mass Scanning head Connecting cable Connector	20 g (without cable 22 g/m 32 g)					

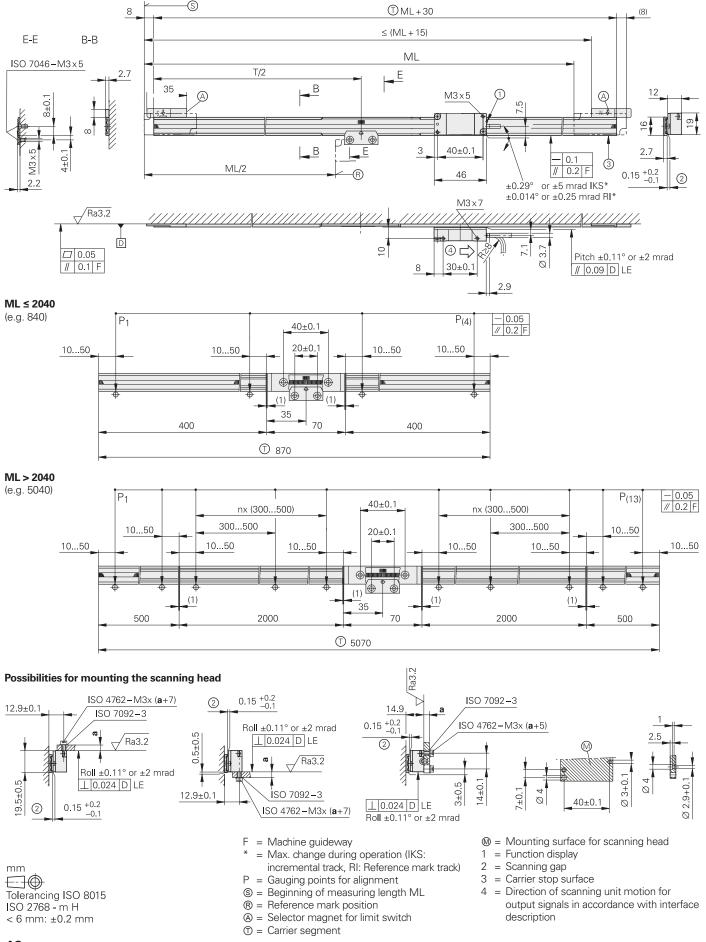
* Please select when ordering ¹⁾ At a corresponding cutoff or scanning frequency Robax is a registered trademark of Schott-Glaswerke, Mainz, Germany.

LIDA 475, LIDA 485

Incremental linear encoders for measuring lengths up to 30 m

- For measuring steps down to 50 nm
- Limit switches
- Steel scale-tape is drawn into aluminum extrusions and tensioned
- Consists of scale and scanning head

Scale	LIDA 405		
Measuring standard Coefficient of linear expansion	Steel scale tape with METALLUR scale grating; grating period 20 μm Depends on the mounting surface		
Accuracy grade	±5 µm		
Baseline error	$\leq \pm 0.750 \ \mu\text{m/50 mm}$ (typical)		
Measuring length ML* in mm	140 240 340 440 540 640 740 840 940 1040 1140 1240 1340 1440 1540 1640 1740 1840 1940 2040 1040 1140 1240 1340 1440		
	Larger measuring lengths up to 30040 mm with a single-section scale tape and individual scale-carrier sections		
Reference marks	Dne at midpoint of measuring length		
Mass	115 g + 0.25 g/mm measuring length		

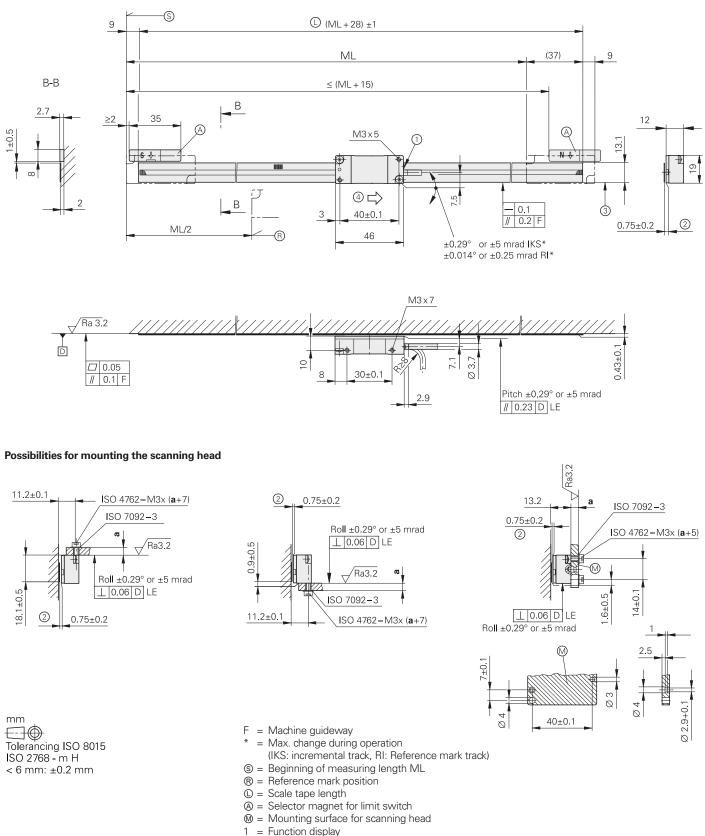

Scanning head	LIDA 48	LIDA 47					
Interface	∕~ 1 V _{PP}						
Integrated interpolation* Signal period	– 20 μm	5-fold 4 µm	10-fold 2 μm	50-fold 0.4 μm	100-fold 0.2 μm		
Cutoff frequency –3 dB	≥ 400 kHz	-					
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz		
Edge separation a ¹⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs		
Traversing speed ¹⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	 ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min 	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min		
Interpolation error	±45 nm	-					
Limit switches	L1/L2 with two diff	erent magnets; <i>outp</i>	out signals: TTL (with	out line driver)			
Electrical connection	Cable, 0.5 m, 1 m,	or 3 m, with 15-pin [D-sub connector (ma	ile)			
Cable length	See interface desc	ription, but <i>limit:</i> \leq 20	0 m (with HEIDENH.	AIN cable)			
Voltage supply	DC 5 V ±0.5 V						
Current consumption	< 130 mA	< 150 mA (without load)					
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 6) \leq 1000 m/s ² (EN 6)						
Operating temperature	–10 °C to 70 °C						
Mass Scanning head Connecting cable Connector	20 g (without cable 22 g/m 32 g)					

* Please select when ordering

¹⁾ At a corresponding cutoff or scanning frequency

LIDA 477, LIDA 487 Incremental linear encoders for measuring ranges up to 6 m

- For measuring steps down to 50 nm •
- Limit switches
- Steel scale-tape is drawn into adhesive aluminum extrusions and fixed at center •
- Consists of scale and scanning head


Scale	LIDA 407		
Measuring standard Coefficient of linear expansion	el scale tape with METALLUR scale grating; grating period 20 μm $_{\rm prm} \approx$ 10 x 10 $^{-6}$ K $^{-1}$		
Accuracy grade*	±3 μm (up to ML 1040); ±5 μm (starting from ML 1240); ±15 μm ¹⁾		
Baseline error	$\leq \pm 0.750 \ \mu\text{m/50 mm}$ (typical)		
Measuring length ML* in mm	240 440 640 840 1040 1240 1440 1640 1840 2040 2240 2440 2640 2840 3040 3240 3440 3640 3840 4040 4240 4440 4640 4840 5040 5240 5440 5640 5840 6040 5640 5640 5640 5640 5640		
Reference marks	ne at midpoint of measuring length		
Mass	25 g + 0.1 g/mm measuring length		

Scanning head	LIDA 48	LIDA 47					
Interface	\sim 1 V _{PP}						
Integrated interpolation* Signal period	– 20 µm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 µm	100-fold 0.2 μm		
Cutoff frequency –3 dB	≥ 400 kHz	_	1	1			
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz		
Edge separation a ²⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs		
Traversing speed ²⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min		
Interpolation error	±45 nm	-		1	- -		
Limit switches	L1/L2 with two diffe	erent magnets; <i>outpu</i>	<i>it signals</i> : TTL (withou	ut line driver)			
Electrical connection	Cable, 0.5 m, 1 m, o	or 3 m, with 15-pin D	-sub connector (male	a)			
Cable length	See interface descr	iption, but <i>limit:</i> \leq 20	m (with HEIDENHAI	N cable)			
Voltage supply	DC 5 V ±0.5 V						
Current consumption	< 130 mA	< 150 mA (without load)					
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60 \leq 1000 m/s ² (EN 60	- 50068-2-6) 50068-2-27)					
Operating temperature	–10 °C to 70 °C						
Mass Scanning head Connecting cable Connector	20 g (without cable) 22 g/m 32 g)					

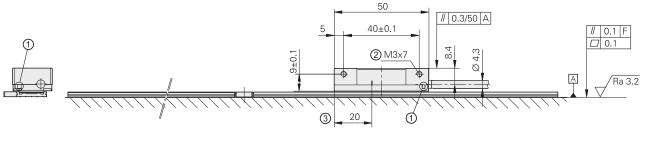
* Please select when ordering ¹⁾ $\pm 5 \ \mu m$ after linear length-error compensation in the evaluation electronics ²⁾ At a corresponding cutoff or scanning frequency

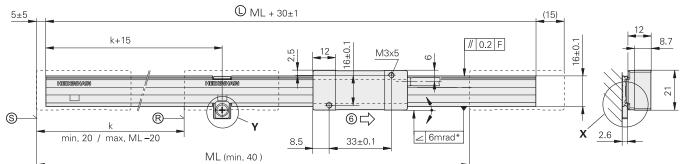
LIDA 479, LIDA 489 Incremental linear encoders for measuring ranges up to 6 m

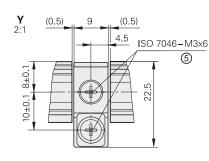
- For measuring steps down to 50 nm •
- Limit switches
- Steel scale tape cemented on mounting surface •
- Consists of scale tape and scanning head

- 2 = Scanning gap
- 3 = Scale-tape stop surface
- 4 = Direction of scanning unit motion for output signals in accordance with interface description

Scale	LIDA 409				
Measuring standard Coefficient of linear expansion	eel scale tape with METALLUR scale grating; grating period 20 μm $_{nerm} \approx$ 10 x 10 $^{-6}$ K^{-1}				
Accuracy grade*	±3 μm, ±15 μm ¹⁾				
Baseline error	$\leq \pm 0.750 \ \mu\text{m/50 mm}$ (typical)				
Measuring length ML* in mm	70 120 170 220 270 320 370 Scale tape from the roll: 2 m,4 m, 6 m 420 520 620 720 820 920 1020 Scale tape from the roll: 2 m,4 m, 6 m				
Reference marks	One at midpoint of measuring length Every 50 mm				
Mass	31 g/m				


Scanning head	LIDA 48	LIDA 47							
Interface	~ 1 V _{PP}								
Integrated interpolation* Signal period	– 20 μm	5-fold 4 µm	10-fold 2 µm	50-fold 0.4 μm	100-fold 0.2 μm				
Cutoff frequency –3 dB	≥ 400 kHz	-	1		-				
Scanning frequency*	-	≤ 400 kHz ≤ 200 kHz ≤ 100 kHz ≤ 50 kHz	≤ 200 kHz ≤ 100 kHz ≤ 50 kHz ≤ 25 kHz	≤ 50 kHz ≤ 25 kHz ≤ 12.5 kHz	≤ 25 kHz ≤ 12.5 kHz ≤ 6.25 kHz				
Edge separation a ²⁾	-	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.100 µs ≥ 0.220 µs ≥ 0.465 µs ≥ 0.950 µs	≥ 0.080 µs ≥ 0.175 µs ≥ 0.370 µs	≥ 0.080 μs ≥ 0.175 μs ≥ 0.370 μs				
Traversing speed ²⁾	≤ 480 m/min	≤ 480 m/min ≤ 240 m/min ≤ 120 m/min ≤ 60 m/min	≤ 240 m/min ≤ 120 m/min ≤ 60 m/min ≤ 30 m/min	≤ 60 m/min ≤ 30 m/min ≤ 15 m/min	≤ 30 m/min ≤ 15 m/min ≤ 7.5 m/min				
Interpolation error	±45 nm	-	1						
Limit switches	L1/L2 with two diffe	1/L2 with two different magnets; <i>output signals</i> : TTL (without line driver)							
Electrical connection	Cable, 0.5 m, 1 m,	or 3 m, with 15-pin D)-sub connector (mal	e)					
Cable length	See interface descr	ription, but <i>limit:</i> \leq 20) m (with HEIDENHA	AIN cable)					
Voltage supply	DC 5 V ±0.5 V								
Current consumption	< 130 mA	< 150 mA (without	load)						
Vibration 55 Hz to 2000 Hz Shock 6 ms	\leq 500 m/s ² (EN 60 \leq 1000 m/s ² (EN 60) 068-2-6) 0068-2-27)							
Operating temperature	–10 °C to 70 °C								
Mass Scanning head Connecting cable Connector	20 g (without cable 22 g/m 32 g)							


* Please select when ordering ¹⁾ $\pm 5 \ \mu m$ after linear length-error compensation in the evaluation electronics ²⁾ At a corresponding cutoff or scanning frequency


LIDA 277, LIDA 287

Incremental linear encoder with large mounting tolerance

- For measuring steps to 0.5 µm •
- Scale tape cut from roll
- Steel scale-tape is drawn into adhesive aluminum extrusions and fixed •
- Integrated function display with three-color LED •
- Consists of scale and scanning head •

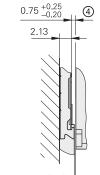
上 0.06/8.7 B

ISO 7092-3

ISO 4762-M3x(a+7)

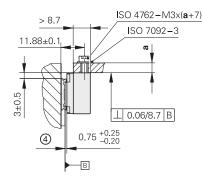
В

(4)


വ

18±0.

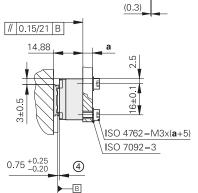
11.88±0.1


> 8.7

0.75 +0.25

X 3:1

Possibilities for mounting the scanning head

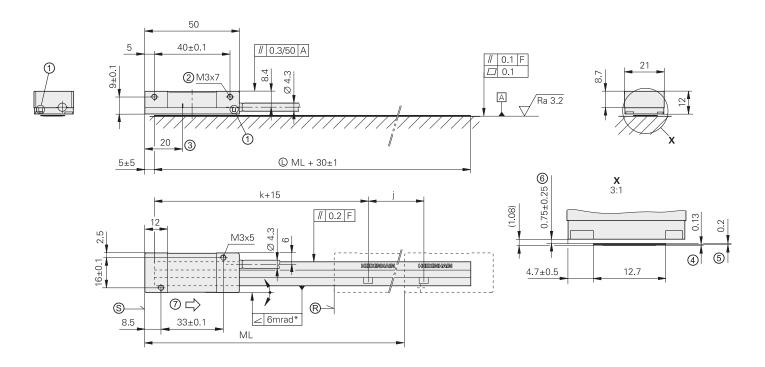

mm $\Box \oplus$ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- = Max. change during operation *
- F = Machine guideway
- R = Reference mark
 \bigcirc = Scale tape length
- S = Beginning of measuring length ML
- 1 = LED (integrated mounting check)
- 2 = Thread at both ends
- 3 = Position of reference mark relative to scanning head
- 4 = Mounting clearance between scale and scanning head
- 5 = Mating threaded hole, M3, 5 mm deep

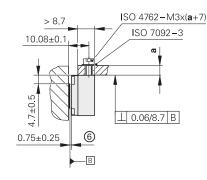
= Direction of scanning unit motion for output signals in accordance with interface description 6

Reference mark:

k = Any position of the selected reference mark starting from the beginning of the measuring length (depending on the cut)


Scale		LIDA 207								
	ring standard ient of linear expansion	Steel scale tape; grating $\alpha_{therm} \approx 10 \times 10^{-6} \text{ K}^{-1}$	period 200 µm							
Accurac	cy grade	±15 μm								
Scale ta	ape cut from roll*	3 m, 5 m, 10 m								
Referen	nce marks	Selectable every 100 mr	n							
Mass	Scale tape Scale-tape carrier	20 g/m 70 g/m								
Scannin	ng head	LIDA 28	IDA 28 LIDA 27							
Interfac	ce	∕~ 1 V _{PP}								
Integrat Signal p	ed interpolation* period	_ 200 μm	10-fold 20 µm	50-fold 4 µm	100-fold 2 μm					
Scannin	frequency ng frequency eparation a	≥ 50 kHz - -	− ≥ 50 kHz ≥ 0.465 μs	− ≤ 25 kHz ≥ 0.175 μs	- ≤ 12.5 kHz ≥ 0.175 μs					
Travers	ing speed	≤ 600 m/min	l	≤ 300 m/min	≤ 150 m/min					
Interpo	lation error	±2 µm	-	1	1					
Electric	al connection*	Cable, 1 m or 3 m, with	15-pin D-sub connector (m	nale)						
Cable le	ength	See interface description	n, but ≤ 30 m (with HEIDE	NHAIN cable)						
Power s	supply	DC 5 V ±0.25 V								
Current	consumption	< 155 mA	< 140 mA (without load)							
Vibration 55 Hz to 2000 Hz Shock 11 ms $\leq 200 \text{ m/s}^2$ (EN 60068-2-6) $\leq 500 \text{ m/s}^2$ (EN 60068-2-27)										
Operati	ing temperature									
Mass	Scanning head Connecting cable Connector	20 g (without cable) 30 g/m 32 g								

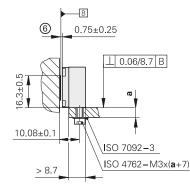
* Please select when ordering

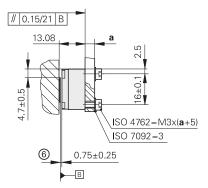

LIDA 279, LIDA 289

Incremental linear encoder with large mounting tolerance

- For measuring steps to 0.5 µm
- Scale tape cut from roll
- Steel scale tape cemented on mounting surface
- Integrated function display with three-color LED
- Consists of scale and scanning head

Possibilities for mounting the scanning head

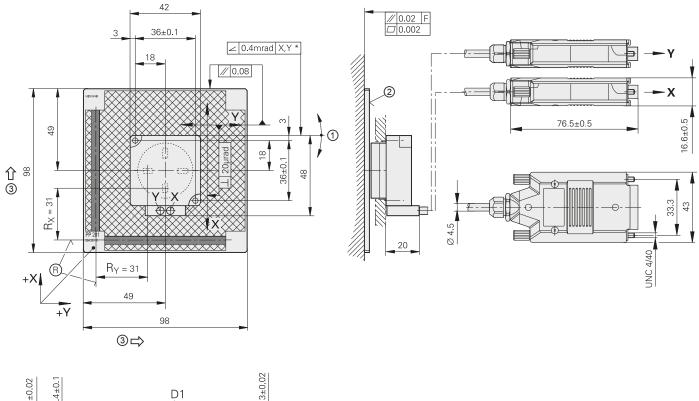


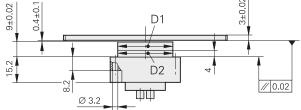

mm ↓ ↓ ↓ Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm

- * = Max. change during operation
- F = Machine guideway
- \bigcirc = Scale tape length \bigcirc = Regioning of measure
- S = Beginning of measuring length ML
 1 = LED (integrated mounting check)
- 2 = Thread at both ends
- 3 = Position of reference mark relative to scanning head
- 4 =Adhesive tape
- 5 =Steel scale tape
- 6 = Mounting clearance between scale and scanning head
- 7 = Direction of scanning unit motion for output signals in accordance with interface description

Reference mark:

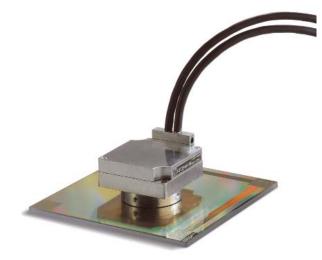
- k = Any position of the selected reference mark starting from the beginning of the measuring length (depending on the cut)
- = Additional reference marks spaced every n x 100 mm


i



Scale		LIDA 209									
Measuring standard Coefficient of linear e		Steel scale tape; grating $\alpha_{therm} \approx 10 \times 10^{-6} \text{ K}^{-1}$	teel scale tape; grating period 200 μm $_{therm} \approx$ 10 x 10 $^{-6}$ K^{-1}								
Accuracy grade		±15 µm	15 μm								
Scale tape cut from	roll*	3 m, 5 m, 10 m									
Reference marks		Selectable every 100 m	m								
Mass		20 g/m) g/m								
Scanning head		LIDA 28	DA 28 LIDA 27								
Interface		~ 1 V _{PP}									
Integrated interpolation Signal period	on*	– 200 µm	10-fold 20 µm	50-fold 4 µm	100-fold 2 μm						
Cut-off frequency Scanning frequency Edge separation a		≥ 50 kHz - -	- - - - ≥ 50 kHz ≤ 25 kHz ≤ 12.5 kHz ≥ 0.465 μs ≥ 0.175 μs ≥ 0.175 μs								
Traversing speed		≤ 600 m/min		≤ 300 m/min	≤ 150 m/min						
Interpolation error		±2 μm	-		I						
Electrical connection	n*	Cable, 1 m or 3 m, with	15-pin D-sub conne	ctor (male)							
Cable length		See interface description	n, but \leq 30 m (with	HEIDENHAIN cable)							
Power supply		DC 5 V ±0.25 V									
Current consumption	l	< 155 mA	< 140 mA (withou	it load)							
Vibration 55 Hz to 20 Shock 11 ms	000 Hz	$\leq 200 \text{ m/s}^2 \text{ (EN 60068-2-6)} \\ \leq 500 \text{ m/s}^2 \text{ (EN 60068-2-27)}$									
Operating temperat	ure	–10 °C to 70 °C									
Mass Scanning he Connecting Connector		20 g (without cable) 30 g/m 32 g									

* Please select when ordering



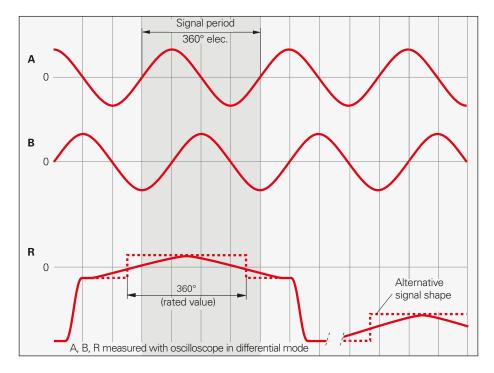
mm \Box Tolerancing ISO 8015 ISO 2768 - m H < 6 mm: ±0.2 mm * = Max. change during operation

F = Machine guideway

Reference-mark position relative to center position shown
Adjusted during mounting
Graduation side
Direction of scanning unit motion for output signals in accordance with interface description

D1	D2
Ø 32.9 –0.2	Ø 33 –0.02/–0.10

	PP 281R
Measuring standard Coefficient of linear expansion	Two-coordinate TITANID phase grating on glass; grating period 8 μm $\alpha_{therm} \approx 8 \times 10^{-6} \ K^{-1}$
Accuracy grade	±2 µm
Measuring range	68 mm x 68 mm, other measuring ranges upon request
Reference marks ¹⁾	One reference mark in each axis, 3 mm after beginning of measuring length
Interface	\sim 1 V _{PP}
Signal period	4 μm
Cutoff frequency –3 dB	≥ 300 kHz
Traversing speed	≤ 72 m/min
Interpolation error Position noise RMS	±12 nm ³⁾ 2 nm (450 kHz ²⁾)
Electrical connection	0.5 m cable with 15-pin D-sub connector (male); interface electronics in connector
Cable length	See interface description, but \leq 30 m (with HEIDENHAIN cable)
Power supply	DC 5 V ±0.25 V
Current consumption	< 185 mA per axis
Vibration 55 Hz to 2000 Hz Shock 11 ms	$\leq 80 \text{ m/s}^2$ (EN 60068-2-6) $\leq 100 \text{ m/s}^2$ (EN 60068-2-27)
Operating temperature	0 °C to 50 °C
Mass Scanning head Grid plate Connecting cable Connector	170 g (without cable) 75 g 37 g/m 140 g

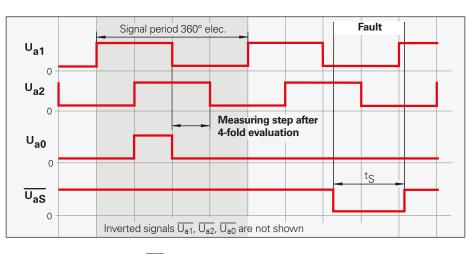

¹⁾ The reference mark signal deviates in its zero crossovers from the interface specification (see Mounting Instructions)
 ²⁾ -3 dB cutoff frequency of the subsequent electronics
 ³⁾ With HEIDENHAIN interface electronics, e.g. EIB 741

Interfaces Incremental signals \sim 1 V_{PP}

HEIDENHAIN encoders with $\sim 1 V_{PP}$ interface provide voltage signals that can be highly interpolated.

The sinusoidal **incremental signals** A and B are phase-shifted by 90° elec. and have amplitudes of typically $1 V_{PP}$. The illustrated sequence of output signals—with B lagging A—applies for the direction of motion shown in the dimension drawing.

The **reference mark signal** R has an unambiguous assignment to the incremental signals. The output signal might be somewhat lower next to the reference mark.



Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Incremental signals

HEIDENHAIN encoders with TLITTL interface incorporate electronics that digitize sinusoidal scanning signals with or without interpolation.

The **incremental signals** are transmitted as the square-wave pulse trains U_{a1} and U_{a2} , phase-shifted by 90° elec. The **reference mark signal** consists of one or more reference pulses U_{a0} , which are gated with the incremental signals. In addition, the integrated electronics produce their **inverted signals** U_{a1} , U_{a2} and U_{a0} for noise-proof transmission. The illustrated sequence of output signals—with U_{a2} lagging U_{a1} applies to the direction of motion shown in the dimension drawing.

The **fault detection signal** $\overline{U_{aS}}$ indicates fault conditions such as an interruption in the supply lines, failure of the light source, etc.

The distance between two successive edges of the incremental signals U_{a1} and U_{a2} through 1-fold, 2-fold or 4-fold evaluation is one **measuring step**.

(D) More information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Limit switches

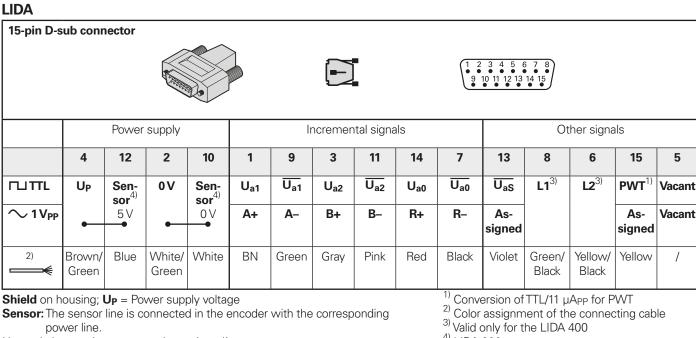
LIDA 400 encoders are equipped with two limit switches that make limit-position detection and the formation of homing tracks possible. The limit switches are activated by differing adhesive magnets to enable switching between the left or right limit. The magnets can be configured in series to form homing tracks. The **signals from the limit switches L1** and **L2** are transmitted over separate lines and are therefore directly available. Nevertheless, the cable has only a very thin diameter of 3.7 mm in order to keep the forces on movable machine elements to a minimum.

The incremental signals conform with the 1 V_{PP} or TTL interface.

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Position detection

Besides the incremental graduation, the **LIF4x1** and **LIP 60x1** encoders feature a homing track and limit switches for limit position detection.


The **signals for position detection H** and **L** are transmitted in TTL level over the separate lines H and L and are therefore directly available. Yet the cable has only a very thin diameter of 4.5 mm (LIF 4x1) or 3.7 mm (LIP 60x1) in order to keep the forces on movable machine elements to a minimum.

The incremental signals conform with the 1 V_{PP} or TTL interface.

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the *Interfaces of HEIDENHAIN Encoders* brochure.

Interfaces Pin layouts (1 V_{PP}/TTL)

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Unused pins or wires must not be assigned!

LIF and LIP 6000

5

/

⁴⁾ LIDA 200: vacant

15-pin D-s	sub conr	nector													
											3 4 5 10 11 12 13	6 7 8 14 15			
		Power	supply			lr	ncremer	ntal signa	als			Ot	her signa	als	
	4	12	2	10	1	9	3	11	14	7	13	8	6	15	5
	UP	Sensor 5 V	0 V	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS}	H ³⁾	L ³⁾	PWT ¹⁾	Vacant
\sim 1 V _{PP}	•	-	•	-	A+	A –	B+	B–	R+	R–	As- signed			As- signed	Vacant
2)	Brown/ Green	Blue	White/ Green	White	BN	Green	Gray	Pink	Red	Black	Violet	Green/ Black	Green/ Black	Yellow	/

Shield on housing; **U**_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Unused pins or wires must not be assigned!

¹⁾ Conversion of TTL/11 μA_{PP} for PWT ²⁾ Color assignment of the connecting cable

³⁾ Valid only for the LIP 6000/LIF 400

LIP 281 and PP 281 R

15-pin D-s	15-pin D-sub connector													
		Power	supply				ncremen	tal signal:	S			Other	signals	
	4	12	2	10	1	9	3	11	14	7	13	5	6/8	15
глш	UP	Sensor 5 V	0 V	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS}	Vacant	Vacant	PWT ¹⁾
\sim 1 V _{PP}	•		•	•	A+	A –	B+	В-	R+	R–	Vacant	Vacant As- signed ³⁾		Vacant As- signed ³⁾
2)	Brown/ Green	Blue	White/ Green	White	BN	Green	Gray	Pink	Red	Black	Violet	/	/	Yellow

Shield on housing; U_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Unused pins or wires must not be assigned!

¹⁾ Conversion of TTL/11 μ APP for PWT ²⁾ Color assignment of the connecting cable ³⁾ LIP 28

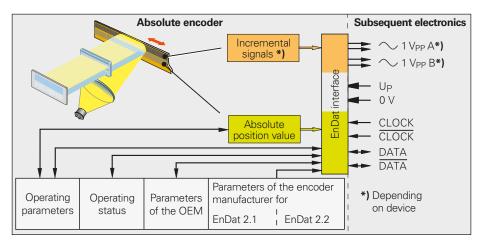
Alternative: LIDA 400

12-pin M2	3 coupling	g			12-pin M23 connector								
-]			2 10 3 11 4	8 12 7 6 5]=			D	8 9 1 7 12 10 6 11 5 4	23	
		Power	supply			Incremental signals Other signal							
	12	2	10	11	5	6	8	1	3	4	7	9	
глш	U _P	Sensor UP	0 V	Sensor 0 ∨	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS}	PWT ¹⁾	
\sim 1 V _{PP}		•	•	•	A+	A –	B+	В-	R+	R–	L1	L2	
2)	Brown/ Green	Blue	White/ Green	White	BN	Green	Gray	Pink	Red	Black	Violet	Yellow	

Shield on housing; **U**_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Unused pins or wires must not be assigned!


 $^{1)}$ Conversion of TTL/11 μA_{PP} for PWT $^{2)}$ Color assignment of the connecting cable

Interfaces Position values EnDat

The EnDat interface is a digital, bidirectional interface for encoders. It is capable both of transmitting position values as well as transmitting or updating information stored in the encoder, or of saving new information. Thanks to the serial transmission method, only four signal lines are required. The DATA is transmitted in synchronism with the CLOCK signal from the subsequent electronics. The type of transmission (position values, parameters, diagnostics etc.) is selected by mode commands that the subsequent electronics send to the encoder. Some functions are available only with EnDat 2.2 mode commands.

Ordering designation	Command set	Incremental signals
EnDat01	EnDat 2.1 or EnDat 2.2	With
EnDat21		Without
EnDat02	EnDat 2.2	With
EnDat22	EnDat 2.2	Without

Versions of the EnDat interface

(D) More information:

Comprehensive descriptions of all available interfaces as well as general electrical information are included in the Interfaces of HEIDENHAIN Encoders brochure.

EnDat pin layout

8-pin M12 coup	oling				15-pin D-sub	connector				
				4 • 3 2	Ē			3 4 5 6 7 8 111 12 13 14 15		
		Power supply Serial data transfer								
	8	2	5	1	3	4	7	6		
E	4	12	2	10	5	13	8	15		
	U _P	Sensor UP	0V •	Sensor 0 ∨	DATA	DATA	CLOCK	CLOCK		
	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow		

Cable shield connected to housing; **U**_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Fanuc and Mitsubishi pin layouts

Fanuc pin layout

HEIDENHAIN encoders with the code letter F after the model designation are suited for connection to Fanuc controls and drive systems.

Fanuc Serial Interface – αi Interface

Ordering designation: Fanuc05 high speed, one-pair transmission Contains α interface (normal and high speed, two-pair transmission)

Fanuc pin layout

8-pin M12 coup	oling				15-pin D-sub connector					
	-			4 • 3 • 2	E			3 4 5 6 7 8 1 1 12 13 14 15		
		Power	supply		Serial data transfer					
-	8	2	5	1	3	4	7	6		
E	4	12	2	10	5	13	8	15		
	U _P	Sensor UP	0V •	Sensor 0 ∨	Serial Data	Serial Data	Request	Request		
_	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow		

Cable shield connected to housing; U_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line.

Vacant pins or wires must not be used.

Mitsubishi pin layout

HEIDENHAIN encoders with the code letter M after the model designation are suited for connection to Mitsubishi controls and drive systems.

Mitsubishi high speed interface

- Ordering designation: Mitsu01
 Two-pair transmission
- Ordering designation: Mit02-4 Generation 1, two-pair transmission
- Ordering designation: Mit02-2 Generation 1, one-pair transmission
- Ordering designation: Mit03-4 Generation 2, two-pair transmission

Mitsubishi pin layout

8-pin M12 coup	oling				15-pin D-sub	connector					
				5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E.			3 4 5 6 7 8 11 12 13 14 15			
Power supply Serial data transfer											
-	8	2	5	1	3	4	7	6			
E.	4	12	2	10	5	13	8	15			
Mit03-4	U _P	Sensor UP	0V •	Sensor 0 ∨	Serial Data	Serial Data	Request Frame	Request Frame			
Mit02-2					Vacant	Vacant	Request/ Data	Request/ Data			
`	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow			

Cable shield connected to housing; U_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used.

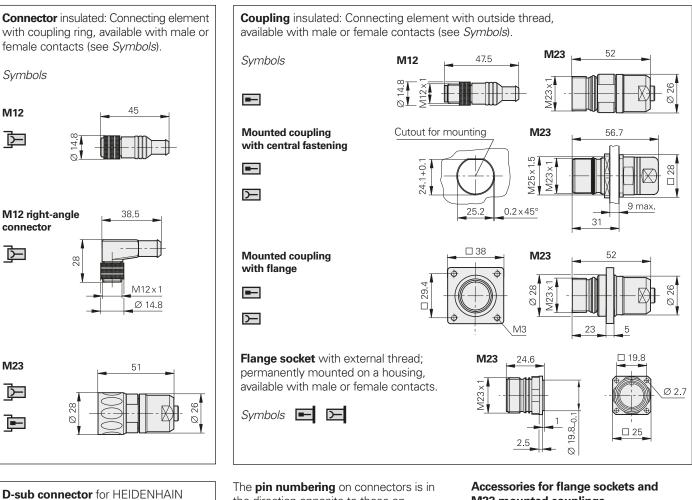
Panasonic pin layout

Panasonic pin layout

HEIDENHAIN encoders with the code letter P after the model designation are suited for connection to Panasonic controls and drive systems.

• Ordering designation: Pana01

Panasonic pin layout


8-pin M12 coup	oling				15-pin D-sub	connector		
				5 4 $3 3$ $8 - 2$	E			3 4 5 6 7 8 11 12 13 14 15
		Power	supply			Serial dat	a transfer	
-	8	2	5	1	3	4	7	6
	4	12	2	10	5	13	8	15
	U _P	Sensor UP	0V •	Sensor 0 ∨	Vacant ¹⁾	Vacant ¹⁾	Request Data	Request Data
	Brown/Green	Blue	White/Green	White	Gray	Pink	Violet	Yellow

Cable shield connected to housing; U_P = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used. ¹⁾ Required for adjustment/inspection by PWM 21

Connecting elements and cables

General information

controls and evaluation electronics. Symbols m ¢ 47 16.6 76.5 1) 50 2) 16 ²⁾ ¹⁾ Interface electronics integrated in connector (LIP 200 and PP) ²⁾ Interface electronics integrated in connector (LIF and LIP 6071)

the direction opposite to those on couplings or flange sockets, regardless of whether the connecting elements have

male contacts or female

contacts.

When engaged, the connections provide protection to IP67 (D-sub connector: IP50; EN 60529). When not engaged, there is no protection.

M23 mounted couplings

Threaded metal dust cap ID 219926-01

Accessory for M12 connecting element Insulation spacer ID 596495-01

Connecting cables for 1 $V_{\text{PP}}, \text{TTL}$

			LIP/LIF/LIDA Without limit or homing signals		A 400 Ind homing
PUR connecting cable [6 x (2 x 0.09 mm ²	$(4 \times 0.14 \text{ mm}^2)$; A _P = 0.14 mm ²	<u>.</u>		•	
PUR connecting cable $[4 \times (2 \times 0.14 \text{ mm}^2)]$	$) + (4 \times 0.5 \text{ mm}^2) + 2 \times (2 \times 0.14 \text{ mm}^2)$?)]; A _P = 0.5 m	nm ²		
PUR connecting cable $[6 \times (2 \times 0.19 \text{ mm}^2)]$)]; $A_P = 0.19 \text{ mm}^2$				
PUR connecting cable $[4 \times (2 \times 0.14 \text{ mm}^2)]$) + (4 x 0.5 mm ²)]; $A_P = 0.5 mm^2$	Ø8mm	Ø 6 mm ¹⁾	Ø 8 mm	Ø 6 mm ¹⁾
With 15-pin D-sub connector (female) and 12-pin M23 connector (male)		331693-xx	355215-xx	-	_
With 15-pin D-sub connector (female) and free cable end	>	332433-xx	355209-xx	354411-xx	355398-xx
With 15-pin D-sub connector (female) and 15-pin D-sub connector (male)		335074-xx	355186-xx	354379-xx	355397-xx
With 15-pin D-sub connector (female) and 15-pin D-sub connector (female) Pin layout for IK 220		335077-xx	349687-xx	-	-
Cable without connecting elements	*	816317-xx	816323-xx	354341-01	355241-01
Adapter cable for LIP 3x2 with 12-pin M23 coupling (male)		_	310128-xx	-	-
Adapter cable for LIP 3x2 with 15-pin D-sub connector, assignment for IK 220		298429-xx	_	_	_
Adapter cable for LIP 3x2 without connector	□€	_	310131-xx	-	_
With 12-pin M23 connector (female) and 12-pin M23 connector (male)		298399-xx	-	-	-
With 12-pin M23 connector (female) and free cable end	<u>}</u>	309777-xx	_	_	_
D-sub connector for encoder connector on connecting cable	D-sub coupling, 15-pin	For cable	Ø 6 mm to Ø 8 mm	315650-14	
M23 connector for encoder connecting element on connecting cable	M23 connector (female), 12-pin	For cable	Ø8mm	291697-05	
M23 connector for connection to subsequent electronics	M23 connector (male), 12-pin	For cable	Ø 8 mm Ø 6 mm	291697-08 291697-07	
M23 flange socket for installation in the subsequent electronics	M23 flange socket (female), 12-pin	\succ		315892-08	
Adapter ~ 1 V _{PP} /11 μA _{PP} For converting the 1 V _{PP} signals to 11 μA _{PP} ; 12-pin M23 connector (female) and 9-pin M23 connector (male)				364914-01	

¹⁾ Cable length for \emptyset 6 mm: max. 9 m

A_P: Cross section of the supply lines

EnDat connecting cables

PUR connecting cable $[(4 \times (2 \times 0.09 \text{ mm}))]$	$(n^2)]; A_P = 0.09 \text{ mm}^2$		
PUR connecting cable $[(4 \times 0.14 \text{ mm}^2) +$	$(4 \times 0.34 \text{ mm}^2)]; A_P = 0.34 \text{ mm}^2$	Ø6mm	Ø 3.7 mm ¹⁾
With 8-pin connector (female) and 8-pin coupling (male)		1036372-xx	801142-xx
With 8-pin right-angle connector (female) and 8-pin coupling (male)	ĿŢ	373289-xx	801149-xx
With 8-pin connector (female) and 15-pin D-sub connector (male), for PWM 20, EIB 74x etc.		524599-xx	801129-xx
With 8-pin right-angle connector (female) and 15-pin D-sub connector (male), for PWM 20, EIB 74x etc.		722025-xx	801140-xx
With 8-pin connector (female) and free cable end	<u>}</u>	634265-xx	-
With 8-pin right-angle connector (female) and free cable end	ĿŢ	606317-xx	-

¹⁾ Max. total cable length 6 m A_P: Cross section of power supply lines

Connecting cables

Fanuc Mitsubishi

Fanuc

PUR connecting cable $[4 \times (2 \times 0.09 \text{ mm}^2)];$	$A_{\rm P} = 0.09 \rm mm^2$		
PUR connecting cable $[(4 \times 0.14 \text{ mm}^2) + (4 \times 10^{-1})]$	$\times 0.34 \text{ mm}^2$)]; A _P = 0.34 mm ²	Ø6mm	Ø 3.7 mm ¹⁾
With 8-pin M12 connector (female) and 8-pin M12 coupling (male)		368330-xx	801142-xx
With 8-pin M12 right-angle connector (female) and 8-pin M12 coupling (male)		373289-xx	801149-xx
With 8-pin M12 connector (female) and Fanuc connector (female)		646807-xx	-
With 8-pin M12 connector (female) and free cable end	¥	634265-xx	-
With 8-pin M12 right-angle connector (female) and free cable end		606317-xx	-

¹⁾ Max. total cable length 6 m A_P: Cross section of power supply lines

Mitsubishi

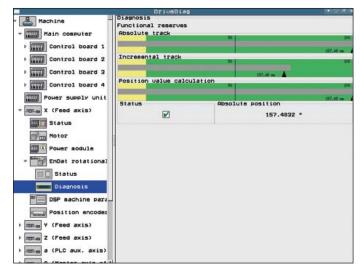
PUR connecting cable $[(1 \times 4 \times 0.14 \text{ mm}^2)]$	+ $(4 \times 0.34 \text{ mm}^2)$]; A _P = 0.34 mm ²	Ø 6 mm
With 8-pin M12 connector (female) and 20-pin Mitsubishi connector	Mitsubishi 20-pin	646806-xx
With 8-pin M12 connector (female) and 10-pin Mitsubishi connector	Mitsubishi 10-pin	647314-xx
With 8-pin M12 connector (female) and free cable end	*	634265-xx
With 8-pin M12 right-angle connector (female) and free cable end	Ŀ	606317-xx

 $\mathsf{A}_\mathsf{P}\!\!:$ Cross section of power supply lines

Diagnostic and testing equipment

HEIDENHAIN encoders provide all information necessary for commissioning, monitoring and diagnostics. The type of available information depends on whether the encoder is incremental or absolute and which interface is used.

Incremental encoders mainly have 1 V_{PP} , TTL or HTL interfaces. TTL and HTL encoders monitor their signal amplitudes internally and generate a simple fault detection signal. With 1 V_{PP} signals, the analysis of output signals is possible only in external test devices or through computation in the subsequent electronics (analog diagnostics interface).


Absolute encoders operate with serial data transfer. Depending on the interface, additional 1 VPP incremental signals can be output. The signals are monitored comprehensively within the encoder. The monitoring result (especially with valuation numbers) can be transferred along with the position values through the serial interface to the subsequent electronics (digital diagnostics interface). The following information is available:

- Error message: Position value is not reliable.
- Warning: An internal functional limit of the encoder has been reached
- Valuation numbers:
 - Detailed information on the encoder's functional reserve
 - Identical scaling for all HEIDENHAIN encoders
 - Cyclic output is possible

This enables the subsequent electronics to evaluate the current status of the encoder with little effort even in closed-loop mode.

HEIDENHAIN offers the appropriate PWM inspection devices and PWT test devices for encoder analysis. There are two types of diagnostics, depending on how the devices are integrated:


- Encoder diagnostics: The encoder is connected directly to the test or inspection device. This makes a comprehensive analysis of encoder functions possible.
- Diagnostics in the control loop: The PWM phase meter is looped into the closed control loop (e.g., through a suitable testing adapter). This makes a real-time diagnosis of the machine or system possible during operation. The functions depend on the interface.

Diagnostics in the control loop on HEIDENHAIN controls with display of the valuation number or the analog encoder signals

Function reserves				
Absolute track		0	50	
Minimum 100 % at 13	24 rev. 337°		4	
Incremental- or sam		0	50	
Minimum 100 % at 13	24 rev. 337°		1	
Position-value form	ation	0	50	
Minimum 100 % at 13	24 rev. 337°			
Mounting diagnostic				Mounting clearance [
Mounting diagnostic Minimum 1.041 mm a	cs at 1324 rev. 337°, Maximum 1.			Mounting clearance (r
Mounting diagnostic	5			
Mounting diagnostic Minimum 1.041 mm a	cs at 1324 rev. 337°, Maximum 1.		3	
Mounting diagnostic Minimum 1.041 mm a Status	cs at 1324 rev. 337°, Maximum 1.	Revolution	3	LO 4

Diagnostics using PWM 21 and ATS software

Commissioning using PWM 21 and ATS software

Diagnostic and testing equipment

PWM 21

The PWM 21 phase angle measuring unit serves together with the provided ATS adjusting and testing software for diagnosis and adjustment of HEIDENHAIN encoders.

For more information, see the *PWM 21/ ATS Software* Product Information document.

	DURING
	PWM 21
Encoder input	 EnDat 2.1 or EnDat 2.2 (absolute value with or without incremental signals) DRIVE-CLiQ Fanuc Serial Interface Mitsubishi high speed interface Yaskawa serial interface SSI 1 V_{PP}/TTL/11 μA_{PP}
Interface	USB 2.0
Voltage supply	AC 100 V to 240 V or DC 24 V
Dimensions	258 mm x 154 mm x 55 mm
	ATS
Languages	Choice between English and German
Functions	Position displayConnection dialogDiagnostics
	 Mounting wizard for EBI/ECI/EQI, LIP 200, LIC 4100 and others Additional functions (if supported by the encoder) Memory contents

DRIVE-CLiQ is a registered trademark of SIEMENS AG.

PWT 100

The PWT 100 is a testing device for checking the function and adjustment of incremental and absolute HEIDENHAIN encoders. Thanks to its compact dimensions and robust design, the PWT 100 is ideal for mobile use.

	Online-Diagnose	ecco seriel	1
	0 25	50 W	2
	Inc.Tr 100 %		Refresh
X	Per.Vel 199 %	1.985 Anbaumal (mm)	E More
	Max 1.988 mm @ 3953 rev 257	164.9947	-
	3955	164.9947 Offe	Power

	PWT 100
Encoder input Only for HEIDENHAIN encoders	 EnDat Fanuc Serial Interface Mitsubishi high speed interface Panasonic Serial Interface Yaskawa Serial Interface 1 V_{PP} 11 μA_{PP} TTL
Display	4.3" color flat-panel display (touch screen)
Voltage supply	DC 24 V Power consumption: max. 15 W
Operating temperature	0 °C to 40 °C
Protection EN 60529	IP20
Dimensions	≈ 145 mm x 85 mm x 35 mm

Interface electronics

Interface electronics from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders, or if additional interpolation of the signals is necessary.

Input signals of the interface electronics

Interface electronics from HEIDENHAIN can be connected to encoders with sinusoidal signals of 1 V_{PP} (voltage signals) or 11 μ A_{PP} (current signals). Encoders with the serial interfaces EnDat or SSI can also be connected to various interface electronics.

Output signals of the interface electronics

Interface electronics with the following interfaces to the subsequent electronics are available:

- TTL square-wave pulse trains
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc Serial Interface
- Mitsubishi high speed interface
- Yaskawa Serial Interface
- Profibus

Interpolation of the sinusoidal input signals

In addition to being converted, the sinusoidal encoder signals are also interpolated in the interface electronics. This permits finer measuring steps and, as a result, higher control quality and better positioning behavior.

Formation of a position value

Some interface electronics have an integrated counting function. Starting from the last reference point set, an absolute position value is formed when the reference mark is traversed, and is transferred to the subsequent electronics.

Box design

Plug design

Version for integration

Top-hat rail design

Outputs		Inputs		Design –	Interpolation ¹⁾ or subdivision	Model
Interface	Qty.	Interface	Qty.	degree of protection	SUDAIVISION	
	1	~ 1 V _{PP}	1	Box design – IP65	5/10-fold	IBV 101
					20/25/50/100-fold	IBV 102
					Without interpolation	IBV 600
					25/50/100/200/400-fold	IBV 660 B
				Plug design – IP40	5/10/20/25/50/100-fold	APE 371
				Version for integration – IP00	5/10-fold	IDP 181
					20/25/50/100-fold	IDP 182
		✓ 11 μA _{PP}	1	Box design – IP65	5/10-fold	EXE 101
					20/25/50/100-fold	EXE 102
			Without/5-fold	Without/5-fold	EXE 602E	
					25/50/100/200/400-fold	EXE 660B
				Version for integration – IP00	5-fold	IDP 101
		~ 1 V _{PP}	1	Box design – IP65	2-fold	IBV 6072
∕ 1 V _{PP} Adjustable					5/10-fold	IBV 6172
					5/10-fold and 20/25/50/ 100-fold	IBV 6272
EnDat 2.2	1	~ 1 V _{PP}	× 1 V _{PP} 1	Box design – IP65	≤ 16384-fold subdivision	EIB 192
				Plug design – IP40	≤ 16384-fold subdivision	EIB 392
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1512
DRIVE-CLiQ	1	EnDat 2.2	1	Box design – IP65	-	EIB 2391 S
Fanuc Serial Interface	1	~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 F
Interface				Plug design – IP40	≤ 16384-fold subdivision	EIB 392 F
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592 F
Mitsubishi	1	~ 1 V _{PP}	1	Box design – IP65	≤ 16384-fold subdivision	EIB 192 M
high speed interface				Plug design – IP40	≤ 16384-fold subdivision	EIB 392 M
			2	Box design – IP65	≤ 16384-fold subdivision	EIB 1592 N
Yaskawa Serial Interface	1	EnDat 2.2 ²⁾	1	Plug design – IP40	-	EIB 3391Y
PROFIBUS-DP	1	EnDat 2.1; EnDat 2.2	1	Top-hat rail design	-	PROFIBUS Gateway

¹⁾ Switchable
 ²⁾ Only for LIC 4100 with 5 nm measuring step, or LIC 2100 with 50 nm or 100 nm measuring steps

ООО «РемСтанМаш»

Адрес: г. Смоленск, улица Верхне-Сенная улица, дом 4, офис № 409. Телефон: 8-800-511-02-67 Телефон: +7-919-0-46-48-46 Е-mail: info@cnchelp.ru Сайт: www.cnchelp.ru